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MODAL AND IMPEDANCE ANALYSIS

AN IMPEDANCE TECHNIQUE

DETERMINING LOW FREQUENCY
PAYLOAD ENVIRONMENTS

Kenneth R. Payne
Martin Marietta Corporation

Deénver,

Colorado

An approximation method for determining low frequency pay-
load environments is developed and compared to state of the
art coupling/response routines. Problems in signal condition~
ing techniques and frequency domain analysis are discussec.’.
Results from analytical simulations with a spring mass sys-
tem and a math model of the Space Transportation System and
Long Duration Facility are presented.

INTRODUCTION

Low frequency payload loads and
environmental predictions can be a very
lengthy and expensive task for complex
booster payload configurations. De-~
tailed mathematical models exhibiting
sufficient resolution of the dynamic
characteristics of both the payload and
booster must be indivicdually generated
than mathematically coupled to form the
final system models, The number of
degrees of freedom assoclated with
these individual models as well as the
number of degrees of freedom describing
the total aystem dynamic characteris-
tics make analysis of this level of
detail economically intimidating. This
generally results in the analyst reduc-
ing the size of system models to cut
down on cost. While some future pay-
load models may legitimately be reduced

in size for system analyses, the evident

complexity of boosters, such as the
Shuttle Tranaportation System (STS),
and payloads, such as current concepts
of Large Space Structures (LSS), will
require enormous numbers of degrees of
freedom for conventional system defin-
ition.

Furthermore, in most cases, booster

models and external forcing functions
are assumed to be constant, i,e.,
changes in the paylocad environments are
asgsumed to be dependent on the payload
characteristics, holding the external
forces and booster characteristics
constant for the most part. These
agsgumptions do have some merit since a
large number of payloads are carried on

a few common boosters. The result is
some analyses are repeated over and
over, often with very similar results.

A preferable technique, eliminat-
ing the necessity of creating detailed
coupled models as well as decreasing
the scope of an overall integration
task, 1s described here. This ap-
proach, designated by the author as
the "impedance technique", corrects
the response of the booster/payload
interface to reflect feedback changes
associated with changes of the payload.
All calculations are done in the fre-
quency domain. The approach elimi~-
nates the necessity of computing the
final coupled eigensolutions. The
final eguations are reduced to simple
complex transfer functions. Further-
more, the booster dynamic character-
istics required to compute these
transfer functions consist of unloaded
interface free-free modal data. Thus,
by obtaining a “standard" set of
hooster madel and input environmental
data, the payload organizations should
be able to calculate the expected low
frequency environments at the inter-
face of the booster/payload. Thus,
the approach also reduces a large
portion of the overall integration
task.

The first purpose of this paper
is to present the development of the
impedance technique and emphasize some
of its salient features. Since any
analytical technigue must pass a
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demonstration test, the second purpose
of this paper is to present the results
of using the payload impedance tech-
nique on the future Long Duration
Exposure Facility (LDEl) STS payload,
This example serves as a cumulative
evaluation and lends some insight into
the value of the methodology.

DEVELOPMENT OF STANDARD MODAL COUPLING

Before discussing the development
of the impedance methodology, a brief
review of a standard modal coupling
technique is in order. The coupling
process begins with two or more discrete
mathematical models depicting, for
example, the structural properties of
any booster and payload (Figure 1)
gysten. The discrete equations of
motion (1) for the payload uncoupled
(free=free) could be written as:

Ul 4} + 1 {3} = o}

where

w

[MP] the discrete mass
matrix of the payload
[KP] = the discrete stiffness
v matrix of the payload
{x.}.{x;} = vectors of discrete
motions of the payload.

; I;l INZERVACE

8003 TR

2

Fig. 1 - Schematic of Typiecal Payload/Bocut.c
System Showing Pertinent Accelerc+ion:
and Loads.

Note here that the equations of motion
shown in Eq. (1) do not include damping
or any applied forces. These factors
in the eguations of motion will be con-
gidered later in the development. A
gimilar set of equations can be written
tor the booster as,

gl {iH + gl i) = fo} @)

where

IME] = the discrete mass
matrix of the booster
[Ku] = the discrete stiffness
. matrix of the booster
{xnblxhi = vectors of the discrete
motions of the booster

Let us turn our attention to the
payload model for the moment. Eg. (1)
generally represents the structure as
free-free, i.e.,, unconastrained at any
point. A more convenient set of equa-
tions can be derived by writing the
absclute motions of the payload as the
sum of motion relative to the inter-
face and that due to the motion of the
interface itself. In matrix form,
this can be written as:

%) = %)+ 111 %) )
where

{X,} = the relative displacements
of the payload points to
the interface.

[T) = the static reduction matrix
of all the payload degrees
of freedom to the interface.

{XI}= the discrete displacements
at the payload/booster
interface.

If the system can be assumed
linear, the relationships shown in Eq.
(3) will also hold for the velocities
and accelerations. It should be pointed
out that the relative motions of the
payload are obtained by constraining the
payload at the interface to the booster,
and the reduction transformation [T)] be-~
comes a rigid body transformatior when
the interface is statically determinate.
Relative motion can be expressed in
terms of the natural modes, (¢], of the
constrained svstem. Then Eg. (3) be-~
comes,

{xp} = (81 fap} + (13{x} (4
where

{qp}= modal coordinates of the
constrained payload,

Transforming the payload energies into
the Eq. (4) coordinate system, the equa-
tions of motion for the payload become

(5)
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where

[1] = unity matrix representing
the generalized mars,

[\‘: My “'P] -

[op) = matrix of elgenvectors
representing the con-
strained payload model.

[@P MP T] = the inertial coupling
matrix

[mﬁ] = generalized stiffness
matrix,

[ % o) - [4]

“Yp = eigenvalues of the pay-
load in a constrained
configuration.

Notice here that the =quations of
motion in Eq. (5) are still coupled.
The upper set of equations represent
noninterface payload dof and the lower
set the interface dof between the pay-
load and booster. Since the interface
degress of freedom {X L are common to
both the payload and "the booster, the
rigid body mass, [T' MpT], can be added
to the booster separately before the
final set of coupled equations are
generated. Or,

[+ 7t 7] fid + [ frad = fo}b @

If modes, [¢,], and frequencies, uz, of
Eq. (6) are calculated, Eq. (6} cin be
decoupled with the modal substitution
approach and simplified to:

[I]{HB} + [wg]{qn} = {o} )]
where

{as¥4q3} = modal coordinates of the
booster.

Note that m2 = 0 for every rigid body
mode. Egs. (5) and (7) can be combined
to form the final modally coupled set of
equations (2].

[1 ¢§wwa]{ip}
sym I HB
e
“’)23 qB 0

(8)

where S5, selects interface dof from the
booster "coordinates. These coupled

equations of motion are then decoupled
by modal substitution of a final set of
eigenvalues, [¢.], 80 that now the sys-
tem equations é}e,

() fac} + [zcc “’c]“cl
+ (g Jtac) )

T, T T
- [ef] {Fe}

g T 9y
T

p

where

€ ,44.1849.1 = coupled modal
i c}{ C}{ Cl coordinates

[2;C mcls coupled modal damping

[m§]= generalized stiff-
ness for the coupled
payload/booster
system,

T | 2
4>c[ ]"c - [“‘c]
Y

we = 0 for all rigid body
modes
{FE}= vector of applied
external forces.

Eq. (9) becomes the equation to be
solved for vehicle responses and loads
for external loading events, e.q.,
engine transients and staging events.
The discrete resronses of both the pay-
load and booster are then computed by
substituting back to the discrete
domain.

DEVELOPMENT OF THE IMPEDANCE METHODOLOGY

While the above derivation was not
completely rigorous, it does describe
the basic assumptions and techniques of
a modal coupling approach. But now let
us return to Fig. 1. The methodology
of the payload impedance technique is
based on isolating the feedback of the
payload from the coupled dynamic charac-
teristics of the total payload/booster
system. The key to the approach lies
in the interface forces shown schemat-
ically in Fig. 1. The desired end
result would be a method by which loads
on a new payload can be determined from
analysis or test of a prior payload for
a set of loading conditions without
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having to obtain a new set of coupled
e{genscolutions, or performing new time
domain analyses.

Congider the interface accelera-
tions, {» }, for the total free-free
system (Hig. 1) as heing the sum of the
accelerations due to the external

forces, | ;}, nud those due to the inter-
face for. 3, {t}. oOr,
§% ) g%} + % (10)
! e { I}f

{ﬁl} = the accelerations at the inter-
E face due to the external forces

{Fe
2%;} = the accelerations at the inter-
f

face due to the interface
force :, {f}

By substituting the appropriate expres-
sions for the terms on the right-hand
gide cf Eq. (10), the total interfac::
accele ‘ations will account for botbh the
external forces being transferre?
through the booster and the dynamic
feedback of the payload on the inter-
face. The external forces of concern
in this development include those such
as engine thrusts and, in the rase of
an STS configuration, possibly landing
loads. They do not, however, include
any external loads applied directly to
the payload.

First consider the accelsrations
due to the external forces applied to
the booster. A set of free-free egua-
tions for the booster can be derived

as:
(1) {g}+ (2 65 5] {35}
T (11)
—
[“’B] {ag} = [‘Fn] {Fel
where

{qy} ete = modal coordinates of
the unloaded booster
model

(2 ¢ w,] = generalized daming
matrix for the unloaded
booster

] = generalized stiffness
of the unloaded booster

EFB] » modal amplitudes at the
external force loca-
tions.

The termination "unloaded" means the
payload body mass contribution [TT M T
in Eq. (6) is not added to the booster
interface before the eigensolution is
obtained. Eq. {11l) can be converted to

the frequency domain by taking the
Laplace Transform of both sides (1],
With zero initial condition, the modal
accelerations of the unloaded boostex
due to the applied external forces only
can be exprcssed as,

ol [T fremjoo

27 —7 7._-
&8 + ZLBuBs + ug

where
s = Laplacian variable

To convert to the freguency domain,

substitute jn for the variable, s, in
Eq. (12). The result can be written
in terms of the freguency ratio, A as

-AZ

T T
qn}i - ["(F)—:‘;‘m][om] {FE(A)}i(lJ)

i

i=1, 2, ... No, of input frequencies
where

f
A= a/ﬁg . the ratio of the ith fre-
guency to the modal fre-

PRy guency

Tranaforming back to the discretc coor-
dinates of Egq. (10), an expression for
the interface accelerations as a func-
tion of the input frequency is given
by:

{%I}Ei - [¢IB] (l—li)+~3?;:;;:5 [QFB] {FE‘1<14)

Or simplifying,

{'Y'I}Ei - (TanM], {FEL (15)

The coefficients matrix, (TADM];, repre-
sents the complex transfer admittance
of the booster from the point of exter-
nal force application to the payload
interface.

Next, to derive the expression for
the interface accelerations due to the
interface forces, {f}, a set of differ-
ential equations similar to Egq. (1ll)
can be wri .en as,

Ja ol




(1) figh + f2egay) |y}

T
0l gt o] 1) ae)
where

{Hé . {qa},|qi;= modal coordinates asso-
ciated only with the
responses to the inter-
face forces,

-
l°fB]= modal amplitudes at the
interface.

Here the distinction in the booster
modal responses is to separate those due
to the external forces, {Fg}, (see Eq.
(10), from thuose due to the interface
forces, {f}. Following the previous
procedure for solving and simplifying
the equations of motion in the freguency
domain, the discrete accelerations at
the interface due to the interface loads
{£}, are:

" r

{xl}fx = logp] eIV [m] e, an
1i=1, 2, ... No. of input frequencies.
where

[°IB] = modal amplitudes at the inter-

face

f
A, = ;{' , ratio of the ith input
wg frequency to the modal
frequency.

or,

{if}f - [paDM], e}, (D)

Here the coefficients matrix,(PADM]i.
represents the complex transfer admit-
tance of the booster from the point of
interfuce force application (i.e., the
inte -face) to the payload interface.
This matrix contains the transfer func-
tion characteristics of the booster at
that point due to the interface forces,
{t}. Substivuting Egs. (15) and (18)
into Eg. (10) yields.

{ﬁrgi - [TADM], {FE}i + (pADM], {f}i (19)

The feedback effect of the payload on
these interface accelerations is con-
tained in the second term of Egq. (19)
which involves the interface forces, {f}.
These forces will now be expressed as a
function of the inertial responses of

the payload. Eg. (5) ecan be written
to include damping as:

OT "
1 T Mp T ‘ q‘- !

sym 'l'T MI‘ T {X.I

(200 -\ 21
P )
BEE ’ Pl -
L “J X
- 2 -
Yp q}, 0
L ] XI f

This ejuation now includes gener-
alized domping and the force on the
payload, {f}. Eq. (20) does imply a
basic assumption. Notice that the
damping and stiffness partitions cor-
responding to the interface degrees of
freedom are null. This is not true if
the interface is not statically deter-
minate. Jn the case of the indetermi-
nate interface, the following expres-
sions are somewhat more complicated but
are manageable. One may separate the
upper set of egnations in (20),

(1) {aph + 120051 {a}

(21)
12145, ) = Lep)” D) (1) {xp
from the lower set,
(771 1) Lop) | ap}
(22)

sariy T (K}« g}

Taking the Laplace transformation of
Eq. (21) and simplifying as before, we
have

2
P 2
1| and w2y,

[¢§ M, T]{§1}1(23)

i=1, 2, 3, ..., No. of input fre-
guencies.

Now substituting (23) into (22)

T,
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+ [TTMPT) {il}i - {fi} (24)
or

(1Mp], {Klgi - ‘f}i (25)

Here, the complex coefficients matrix
[IMP])4 represents the impedance of “com~
plex iuertia" of the payload at the
payload/booster interface.

Now all of the complex transfer
function characteristics that are
necessary to fully describe the vehicle
coupled response have been derived, and
the final form of the coupled impedance
can be generated. Substituting (25)
into (19) yields,

P}, = oo, {FEL

(26)
+ [PaDM], (DMP) {xI}i

1=1, 2, 3, ..., No. of input fre-
quencies.

Or, rearranging

([I] - [PADﬁ]i[IMP]i> {il}i = [TADM]i{FE}i 27

i =1, 2, 3, ..., No. of input fre-
quencies.

In this form of the impedance equation
the left hand side matrix of complex
coefficients for the interface acceler-
ationy represents the coupled impedance
of the payload/booster combination, and
the right hand side represents the com-
plex "pseudo" generalized force. Since
the external fornes,{FE}, are in complex
spectral form, and the coefficient
matrices are complex as welil, the
desired spectral interface acceleration
can be obtained with Eq. (26) using
nothing more than complex multiplication.
This simplicity greatly reduces the cost
of generating the low frequency environ-
mental predictions. If we now consider
some new payload for the same booster
with the same interface and fame set of
external force/torque vectors (Fig. 2),
then the intarface accelerations for the
new payload will be:

ﬁlh -(n]- Wmmhllmﬂi)q

(28
([11 - [PADM], (1“”111) {361}11

i=1, 2, 3, ..., No. of input fre-
quencles.

where "1" & "2"designate differenl pay-
loads.

O

A N\

Payload #1 Payload #2
-ﬁ, -
Booster

Fg Fg

Fig. 2 ~ Schematic of Impedance Technique for
Replacing One Payload Feedback With
Another

The advantages of analyzing the
interface environments in this manner
appear to be significant. The resultant
set of coefficients for{xl} in Egq. (28)
act as a coupled analytical filter that
modifies the environment for payload
number 1 to arrive at an environment for
payload number 2. A payload organiza-
tion could obtain the complex imped:znce
from the proposed data bank that corres-
ponds to the previous interface acceler-
ations and generate new flight predic-
tions for the desired interface. Notice
that the basic equations of this tech-
nigue do not require a coupled set of
eigensolutions discussed in Eq. (9).
Thus, it appears that either Eq. (27) or
(28) could be utilized to significantly
reduce the life-cycle cost of loads
analyses.
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The assumptions with the most im-
pact on the technique involve the use
of Eq, (28)., Neither are the forcing
functions applied to the vehicle exact-
ly repeatable nor are the transfer
characteristics the same for all booster
configurations, In the case of a
booster system like the (STS), these
characteristics change for each locatioun
in the Orbiter bay.

EVALUATION OF THE IMPEDANCE TECHNIQUE

To assess the accuracy of the tech-
nique, specifically the calculated re-
sults of Rg. {26), time domain results
were compared with those from the imped-
ance technigue for a simple system
(PFig. 3). This evaluation using this
simplified model proved beneficial in a
number of areas. (The degree of freedcm
X7 was uped to describe the interface
motion for this check case, with the ex-
ternal forces, Fp , applied at Mj.) Time
histories of a number of forcing func-
tions were used to force the model (see
Fig. 3). Differential equations similar
to those depicted in Eg. (9) were then
solved usiig standard time domain tech=~
nigues. The discrete accelerations of
the assumed interface were used for com-
parison with the impedance results. The
forcing functions used in the frequency
domain analysis were obtained by con-
verting the time histories of Fg to
Fourier spectra with a Fast Fourier
Transform (FFT) algorithm.
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Fig. 3 - Schematic of Three Mass Check Model

One digcrepancy pertaining to the
modal damping became apparent from the
beginning. Various techniques have been
tried to obtain the correct damping for

AP L ) S S SRy, § SO

a modally coupled model. For example,
one technigue used on the Viking Pro-
gram involved calculating the triple
materix product of the coupled set of
modes and the uncoupled diagunal damp-
ing matrices and discarding the result=~
ing off~diagonal terms to maintuain an
uncoupled set of equations. This gen~
eralized damping is then used in Egs.

(9) for the time domain solutiona., This
assumption does force the coupled damp-
ing to be a function of the coupled
modes but discards, in essence, the
coupling effect from mode to mode. The
manner in which the damping is meusured
and assumed for a payloau and booster
presents the problem. If the damping is
measured for a typical payload in a
modal survey, the recorded damping is a
function of the test boundary conditions.
When the payload is physically attached
to the booster, a new set of boundary
conditions exist and, therefore, a new
set of relative motions or mode shapes
also exist. For small damping, less
than 1%, the previous philosophies about
how to generate coupled damping may bhe
adeguate for determining payload loads
and environments in the time domain.
Generally speaking, significant changes
in damping make very little difference
in time domain peak response. Since

the impedance technique is a frequency
domain approach, changes in damping have
a large impact on the transfer function
characteristies. The impedance method
never computes the final set of eigen-
solutions, therefore the transfer func-
tions from modal counling and the imped-
ance technique will never be the same,
In order to get comparable transfer
functions for both the impedance check
and the coupled time domain check, dis-
crete dampings were assumed as shown in
Fig. 3. Thus, the resulting functions
were the same regardless. This point

is important in light of future compar-
isons of existing loads analysis tech-
nigues and those similar to the imped-
ance methodology developed above.

Use of the FFT in obtaining the
spectral data also presents some prob-
lems as discovered by experimenting
with the sample problem, The FFT is
more commonly used for spectral analy-
sis, e.g,, auto-spectral densities,
coherence, etc., of random data [3, 4).
Certain errors are introduced by signal
truncation of time histories. In random
data analysis, these errors are usually
minimized by taking a number of averages
or statistical degrees of freedom (4],
The effects of truncation on transient
or complex signals cannot be averaged
out since the signals are of finite
length and do not repeat themselves.
These tvuncation errors can be signif-
icant in generating Fourier spectra,
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especlally when these spectra are used
to drive a system. The system transfer
func*ion has a certain value at a cer-
tain frequency and thus responds to the
input at that frequency regardless of
the srror of that input.

Two separate force time histories
wvere applied to the model depicted in
Fig. 3. One force time history con-
gsisted of a decaying sine wave shown in
Fig. 4, The same decaying sine function
with a dc (steady-state) shift is shown
in Fig, 5. These two forcing functions
characterize one of the most common
truncation effects [5). The force time
history represented in Fig. 4 could
represent a lateral force at a payload/
booster interface extracted from
recorded flight data. Fig. 5 could be
obtained in a like manner and represent
a longitudinal interface load.
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Fig. 4 -~ Decaying Sine Forcing Function
With No Steady State

The forcing function shown in Fig.
4 was used to drive the 3 mass check
model and obtain the acceleration as a
function of time for the middle mass at
degree of freedom number 2 (see Fig. 3).
In addition, the Fourier transform of
the forecing function in Fig. 4 was gen=-
erated using an FFT after the time
higtory was "windowed" by a Tukey
window [5] . This Fourier transform was
then used to drive the model using Eq.
(27} to calculate the response of
degree of freedom pnumber 2. The spec-
tral results of the impedance analysis
is shown in Fig, 6. But for the true
comparison this spectral response was

‘
6 00 61 0D b4 61 0b 87 4 B e
TIRCiSEC)

Fig. 5. - Decaying Siue Forcing Function
With Steady State

inverse Fourier transformed to obtain

a time history to correlate with the
time domain response. This correlation
is shown in Fig. 7.
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Fig. 6 - Spectral Respouse of Mass No, 2 To
Decaying Sine With No Steady State

The effect of the window is more
obvious when the wodel is driven in the
frequency domain with the force in Fig.
5. Figs. 8§ and 9 show the Fourier
spectral response of degree of freedom
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Figs. 10 and 11 again depict a compar-~
ison of both sets of freguency domain
response to the time domain response,
It is obvious from these plots that for H
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Fig. 11 -« Time Domain Comparisons of
Impedance And Time Domain
Solutions With A Tukey Window

It is apparent from the results
obtained that the low frequency environ-
ments can be predicted with the imoed-
ance technique. Better correlation
with the time domain solutions could
possibly be made with a different
window or increasing the frequency
resolution, however, enough correla-
tion is apparent to attempt to use the
technique for more complicated systems.

As a further demonstration of the
impedance technigue, interface accel-
erations were computed for a future
STS payload. The primary objective of
this analysis was to compare results
with other current environmental pre-
dictions from state-of-the-art tech-
niques.

The models us.’ for this set of
analyses were chosen to be consistent
with those used for the loads cycles
done by the 8TS project [6]. They were
obtained through Langley Research
Cebter (LRC) and were comprised of
NASTRAN eigenvalues and eigenvectors
for the TS finite element models of
the liftoff and landing configurations.
Two hundred engenvectors were used for
each configuration which included the
models of the Development Flight
Instrumentation (DFI) and Space Pallet
{sP). All modes for each loads case
were assumed to have a modal damping
ratio of 1%.

The Long Duration Exposure Facil-
ity (LDEF) was chosen as the paylocad
for these analyses. Forty eigenvalues

and elgenvectors were again furnished
by LRC, The discrete mass matrix for
the LDEF, necessary for the generation
of the inertial coupling coefficients
matrix was not available and had to be
generated from discrete model data with
our finite element routines, Qrtho-
gonality checks were calculated to
ensure that the modes and regenherated
mass matrix were consistent., Like the
hoaster models, the LDEF modes were
agssumed to have 1% damping throughout.

Two loading events, liftoff and
landing, were choren to demonstrate the
impedance technigue. The liftoff event
analyzed was case LPS501R [6) which is
defined as a "high performance fast
timing" engine thrust with a mismatch
between right and left SRBs, The SRB
mismatch in this case was 0.098 sec.

A more detailed description of the
flight conditions can be found in [6].

A total of 62 discrete forcing
functions were used to drive the analyt-
ical model for liftoff, Each defined
time history was 10.0 sec in length.

To obtair the Fourier spectrum of each
force, they were first digitized, i.e.,
linearly interpolated, at 102.4 samples
per second. This resulted in a total
number of samples of 1024 with a Nyquist
frequency of approximately 50 Hz. The
same Tukey window discussed previously
was used for the liftoff forcing func~
tions. A Fourier spectrum of a repre-
sentative force was plotted and is
shown in Fig, 12.
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Fig, 12 - Typical Fourier Spectrum of
"lecos" Wind Load Used For
Liftoff Analyais




An example of the spectral results
of the impedance predictions for the
liftoff event is shown in Fig., 13, For
a check with previous predictions, the
complax Fourier spectra were inverse
transformed to obtain a time history
for amplitude and frequency content
comparisons. An inverse Fourier trans-
form time history is presented in Fig,
14. Shown alsoc on the plot are the
correasponding peak accelerations
{transcribed from [7]) resulting from a
time domain analysis.
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Fig., 13 - Fourler Spectrum of X Response
At Forward Attach Polnt Right
Hand Side For Liftoff

The Tukey window effect on the
resulting time histories is best shown
in Fig. 14 which is the longitudinal
acceleration at a forward LDEF attach
point. Because of the window, this
response beging and ends at approxi-
mately zero amplitude., However, since
this windowing technique cf signal con-
ditioning does not alter the signal in
the remaining areas, its effect can be
ignored.

The correlation of the lmpedance
technique results and the time domain
solutions show generally good compari-
sons. Transcribing the peaks of the
time domain accelerations to the inverse
transform plots is agreed not to be a
cnnclusive comparison technique. How-
ever, the peaks do appear to occur at
the same points in time for both cases,
indicating a minimal phase error. The
largest discrepancy is shown in ampli-
tude compariscns. Evenr in this area
some of the amplitudes calculated with

the impedance technique compare quite
well. The best comparisons occurred
in the longitudinal accelerations,
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Fig. 14 ~ Inverse Transform Respoense X
Forward Attach Right Hand Side
For Liftoff

The final event analyzed with the
impedance technique was a landing case
(LM 550 in (7)). For this event 266
Fourier spectra were calculated for
diserete forecing functions for the
orbiter. The event can generally be
described as a high angle of attack
with symmetric landing conditions.

The problems encountered in ana-
lyzing the landing event resulted in
further definition of analytical
requirements for the use of the imped-
ance technigue for low frequency pre-
dictions. The analysis of this event
pointed out the pitfalls of frequency
resolution. The time histories of the
forcing function for landing were of
two different lengths. These are two
basic external forces on the orbiter
for landing [7) ¢ the landing gear strut
loads; and the aerodynamic loads due to
such things as ground effects, etc. The
strut force time histories were 2.0
seconds in length and all other loads
were only 0.8 seconds in length. Since
the behavior of the aerodynamic loads
were not known past 0.8 seconds and
gince it appeared that all oscillatory
charactaeristics of the strut forces had
diminished by 0.8 sec., the decision
was made to truncate the strut forces
at 0.8 seconds for the analysis. The
resulting sample rate based on the 512




data points used was 640 samples per
gsecond with a Nyquisat frequency of 320
Hz.

The important thing of note, how-
ever, was that the frequency resolution
for the 0.8 second signal was only 1.25
Hz. This resolution would be sufficient
for describing characteristics of higher
frequencies. However, the orbiter model
contains low freguency bending modes at
or around 5 Hz. With the assumed 1%
modal damping ratio, this mode may have
a bandwidth of 0.1 Hz. Thus, it is
obvious that frequency descriptions of
the input forces with a frequency resol-
ution of 1.25 Hz could and did give
erroneous answers,

The decision was made to digcard
the aerodynamic loads and perform the
analysis with the full 2,0 second time
history of the strut loads only. This
decision of neglecting the aerodynamic
forces was based on the general assump-
tion that the aerodynamic forces
contribute only a small part to the low
frequency environment at the paylcad
interface. The resulting resolution
with only the strut forces becomes 0.5
Hz, which comes somewhat closer to the
desired 0.1 Hz.

Representative results of the
analysis with only the strut loads are
shown in Figs. 15 and 16. Here again
the time domain peaks from (7] were
transcribed to the plots for compar-
ison.
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Fig. 16 - Response X Forward Attach Right
Hand Side For Landing Due To Strut
Forces Only

These comparisons were not ex-
pected to be as good as the liftcff
cage generally because of the absence
of aerodynamic loads. The worst com=
parisons are most evident in the "2"
direction acceleration, as expected,
since this is the direction of the
general aerodynamic forces. Also, the
correlation seems to get worse from
about 0.3 to 0.4 seconds on. This
again is when the aerodynamic forces
are the most active.

DISCUSSION AND CONCLUSIONS

These results do point out one
important point: determining the low
frequency environment from a pure
spectral standpoint is quite difficulet.
Frequency domain analysis is too
sensitive to damping for example. As
the results of the 8T8 analysis show,
additional and more meaningful informa-
tion is gained from the time history
obtained from the inverse transforms,

The Analysis of the liftoff event
for the LDEF by far showed the best
results. Even these results can be
improved, however. As discussed in the
previous sections, the differences in
coupled damping versus the resulting
damping of the impedance technique will
never go away. The differences in damp-
ing due to changes in boundary condi-
tions will always be there. However,
with in-flight information on the true
transfer characteristics, these problems
could be minimized.
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The set of aualysis performed with
the impedance technique for the liftoff
case included loads that were applied
somewhat incorrectly, The steady-atate
winds and gust loads arec represented by
a steady state level with a "l-cos"
gust function. In normal time domain
golutions the necessary initial condi-
tions are derived to place the vehicle
in equilibrium before the time domain
solutions begin. In the spectral analy-
sis of the impedance techniyue, these
forces were applied at time zero,
forcing the model to respond to an
"imaginary" transient at time zerso.
Therefore, the responses shown will be
changed when the winds are done
correctly.

The landing event analysis probably
had the most meaningful results for the
intent of this study. These results,
when compared to the time domain analy-~
sis prediction, show not only the
effects of the aerodynamic forces but,
more importantly, give insight into the
errors caused by inadequate freguency
resolution.

Neither the liftoff or landing
results shown should be used in any
manner for design purposes. Discrepan-
cies in the models used in these analy-
ses versus the latest design revisions,
or, what was used in [7) may cause
drastic differences in response. In
addition, assumptions made in the imped-
ance technigque analysis, e.g., neglect-
ing aerodynamic loads, for evaluation
purposes cause the results to be some-
what unconservative.

Based on the results of all of the
analyses performed, a limited evaluation
of the technique for the use of future
payloads can be made. 1t appears that
this technique can be used for any
coupled payload system in a very inex-
pensive manner., As stated before, the
ratioing of the acceleration from one
flight to the next, as developed in Eq.
(28), probably has the least use for
STS payloads due to the variety of
interface locations in the bay. It does
appear as an appealing analytical ap-
proach for changing pallets or pallet
mounted experiments.

However, the best use can be to
achieve the removal of an integration
role with a final set of eigensolutions.
This can be achieved in much the same
way as was done in this study. 1In the
future, payload projects can obtain a
data tape from the STS project that
contains the best STS model and flight
event cases. The payload designer can
then perform the analysis to evaluate

the desiygn. This philosophy merely
requires continual update of the STS
dynamic characteristics and the latest
flight data information,

Having calculated the predicted
low frequency environment for a partic-
ular payload, the evaluation can be
made for the necessity of a more ex-
tensive loads and/or response analysis
for the payload based on the spectral
content of the interface epvironment
and the payload impedance., If there is
concern about the design margin, the
impedance technique programs should give
some insight into the modal deyrees of
frecedom of the generalized forces that
are contributing most to the environ-
ment at that freguency bandwidth. This
information should then be used to
reduce the size of the models involved
and again cut costs.

In summary, based on the results
of this study, with reusable boosters
and an environmental data bank, pay-
load organizations can use the imped-
ance technique to:

1. Eliminate the necessity of inte-
grated coupled analysis;

2. Perform their own low cost
environment predictions;

3, Reduce analytical effort with
spectral evaluation of coupled
response; and,

4. In the event more detailed analy-
sis is necessary, reduce the size
of the dynamic models.
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A STATISTICAL LOOK AT MODAL DISPLACEMENT RESPONSE
TO SEQUENTIAL EXCITATIONS

William J, Kacena
Martin Marietta Curporation
Denver, Colorado

The residual displacement response to a sequence of simple excitations
veparated by nearly equal time intervals is evaluated on a statistical
basis. Mean plus three-sigma responses are plotted ae & function of
the number of sequential excitations for a range of damping valuea.
The curves wvere derived for parametric evaluation of the vibratory
pointing error for a maneuvering spacecraft, but they can be applied
to other sequentisl excitation problems where the residual displace-
ment in & key mode is the response parameter of interest.

INTRODUCTION

Maneuver excited vibration of a space=~
craft can cause oscillatory pointing errors of
sengitive optical instruments. Reference [1]
shows that a eimple residual displacement
shock spectrum of the maneuver's rotationsl
acceleration time history is & powerful analy-
sis tool for bounding these errors, The
spectrum envelope curve at each modal frequency
combined with an appropriate modal constant
predicts the worst case ervor assoclated with
each mode of vibration. This analysis tech-
nique both identifies whieh vibration modes
produce significant errors and calculates the
magnitude of the worst case undamped error in
each mode due to a single maneuver excitation,

When sequential excitations are applied,
the accumulated response may be many times the
responde introduced by a single worst case
excitation. lHowever, such factors as damping,
the probability of a worst case excitation and
the probability of badly phased excitations all
reduce the cumulative response from the worst
case upper bound (the number of excitatious
times the worst case undamped effect from a
aingle excitation). This paper preaeats the
results of a statistical study of this gequen-
tial response problem.

Each excitation in a sequence is assumed
to have a gimple waveform, and random selection
of each excitation's time duration regults in
a statistical representation of how well the
excitation is tuned to the response frequency.
Similarly, the random selection of times
betwaen excitations provides a statistical look
at how the response 18 affected by arbitrary
phasing among excitations. These two random
time oelections are combined with a damped
response analysis for a scenario of N sequen-
tial excitations, and the worst case residual

responses from each of M guch scenarios are
evaluated statistically (mean and standard
deviation). The statistical worst case re-
sponse (mean plua thrae-sigma) 1e normalized to
the worst case response from a single excita-
tion and plotted as a function of the number
sequentisl excitations. Parametric curves for
various values of damping are represented using
a decay constant parameter that is a function
of wodal damping, modal frequency, and the
average values of the random time parameters.

The curves presented provide a usefu)
nowograph for evaluating the probahle residual
displacement reaponse of a single vibration
mode when excited by a sequence of simple
forcing functions spaced at nearly equal time
intervals. Although the results apply directly
to the evaiuition of residual pointing error of
a maneuvering spacecraft, they can be applied
to any vibration problem (forced or base motion)
wvhere residual displacement in a key mode is
the important response parameter.

NOMENCLATURE

A maximum responge to a single excitation

decay constant parameter, e-2ncf(co+1°)

slope of forcing function
modal frequency (Hz)

normalized respnnee parameter

TR e e

number of sequences consldered
statistically

=

nth excitation in a sequence
N  aumber of sequential excitations

t time variable and time between
excitations (seconds)

o avg. time between excitations (seconds)
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a time period (seconds)

response displacement

T
X
B fraction pavameter
¢ modal damping ratio
T

actual excitation time (seconds)

v average time during an excitation
(seconds)

DAMPED RESPONSE CHARACTERISTICS

The reasponse of a single degree-of-free-
dom system with natural frequency, f, and
damping ratio, {, experiences exponential decay
such that

Ix] § A e iM4LE (0

If equation (1) bounds the rcsponse to a single
worst case excitation, then the combined
response to this excitation and a second iden~
tical excitation at a time T after the first

18 bounded by

1%l § A (e-zntf:+e-2n¢£(t+r)) @
For t = 0 and N identical excitation= ced
at equal time intervals, T,

N-1

'l‘i‘l : Z (“hzn;ﬁ )n (3)

u=0
If v 18 the average exclitation time and t_ is
the aversge time between excitations,
Tw= t°+To: and equation (3) ca . be rewritten as

N-1

'—i‘—'— s 2 p" (&)

n=0
where D 18 & decay constant paranmeter,

b = e-2rr£f(c°+7;) (5)

From handbook data on infinite series [2]

oo, L Sps
D =5 » 09031

(6)
n=0Q
The expression in (6§ is a simple representa-
tion feor the upper bound damped xesponse to a
sequence of excitations, For D = 0.5, the
maximum response is limited to twice the worst
case gingle excitation response., However, as
D approaches unity, the regponge becomes large,
and the simple upper bound expression may be
overconservative. Since the decay parameter D
ig the key damping term for an infinite
sequence of responsus, we anticipate that D will
be an independent damping parameter when a
finite sequence of responses is evaluated, The
following statistical results confirm this
hypothesis.
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STATISTICAL ANALYSILS

Figure 1 shows the undamped residual dis~
placement responae spectrum for a simple sym-
metric excitation. A change in the time dur-
ation of the excitation causes the spectrum
peaks and valleys to shift accordingly in
frequency. This indicates that there 1s a
statistical relationship between the excitation
time period and the expected response magnitude.
In addition, the times between excitations
dictate the phase relationship between sub-
sequent responnes, Hence, there ie a statis-
tical relationship between the time between
excitations and the expected accumulation of
the response.

This statistical response analysies uses a
random number generator to select the maneuver
time period, 7, and the time between oxcita-
tions, t, of Figure 2 on an arbitrary uniform
distribution basis:

1) given modal frequency, f
2) asesume f1>>1

3) assume ft>>1

4) (1o ~ 1/f)Y<r<(1y + L/f)
5 (tp =.5/E)<e<le +.5/f)

Residual Response
1072

1074

-5
107}

Freaquency (Hz)
¥igure 1, Typical Trisungular Waveferm 3Spectra

th
otht (ne1) LR
Excitiation Exeitation
NI, P | '

¥
L-'T""Hﬁ-—*—‘—ﬂ

¥ = Constant
Figure 2. Sequential Excitation Parameters
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The assumptions in 2) and 3) above indi-
cate that the particular problem of interest
here and the results presented are for excita-
tion and quiescent times that are much longer
than a cycle of the dominant vibration mode.
The random sela2ction of t over u two cycle
range of the modal frequency ylelds statistical
response regults that reflect one cycle of the
double peak/valley recurrence in the spectral
plot of Figure 1. Henze, the selection of 1
does not bias the response statistics to either
a spectral peak or valley. Similarly, the
random selection of t, in 5) above, within one
cycle of the modal frequency makes the phase
relationship between the initial conditions and
the impending response strictly arbitrary.

Figure 3 sunmarizee the results of this
atudy by plotting a normalized residual dis-
placement response parameter versus the number
of gequential excitations, The response para=
neter 1s normalized such that unity is the
response to a single worst case excitation as
defined in [1] . The top curve represents
the stacked worst case undamped response to
sequential excitations, and the next curve il-
lustrates that the mean plus three-sigma un-
dampad response for random time selections 1is
eignificantly less than the worst case., The
mean plus three-sigma response statristics are
computed by calculating the absolute maximum
residual displacement responge for M
scenarios each having N excitations, and then
computing the statistical repreasentation from
the array of M maxima.

The equation ol the statistical response
for zero damping (determined empirically from
Figure 1) 1is only a function of the number of
excitations, N.

Statistical Undamped

- Y
Normalized Response (M) % for N2z (7)

The statistical damped reeponse results in
Figure 3 are presented as a family of curves
for various values of the decay constant
parameter, D, This parameter (ranging from O
to unity) was selected because it is the aver-
age exponentiml decay of the response between
excitations. Sufficient analyses were con~
ducted to verify that D provides a general
representation independent of the relative
magnitudes of ¢, f, To and tg.

The curves are not defined for more than
40 sequential excitations as computational
expense becomes a restriction for large values
of N. However, an upper bound on the normal-
ized response can be estimated using the infi-
nite series expression of equation (6). It is
refreshing to observe chet equation (5) does
indeed bound the curves for all values of D,
However, as D approaches unity, use of this
upper bound may be overcondervative. For this
reason, a technique for extrapolating the data
of Figure 3 has been developed.

100 UNDAMPED  —]
STACKED
L worsT case
g (N) =N
40
UNDAMPED
STATISTICAL ]
WORST CASE |,
NORMALIZED 20 g (N) = (2M) 1
RESPONSE
PARAMETER, LA
g (W) 10 o
D= 1.0 =
- 4 .98
‘,::;/' 95 .
4 9" MEAN PLUS
] 11 11 THREE-SIGMA
T . =4 .8 STATISTICAL [
1 FU—Y
- 1 WORST CASES
2 '? [
parmnt
1
[
1 .2
. [’ 10 20 40 100

NUMBER OF SEQUENTIAL EXCITATIONS, N

Figure 3 Statistical Response Results for Sequential Excitations
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EXTRAPOLATION APPROACH

The fraction of the stacked worst case
undamped response repreaented by equation (6)
1s [N(2-D)] ~l. One migit suspect that the
statistical results are a fraction of the up-
damped statistical curve also related to the
function [N(1-D)] ~l. Based on equations (6)
and (7), assume that

Statistical Damped Y
Normalized Remponse 8(2N) ®

where B 18 a function of [N(1-D)j -1,

Returning to Figure 3, constant values of
B ave lines parallel to the undamped curve
(2N)5. When guch lines are drawn for various
values of 8, each constant § line intersects
several of the constant D lines. When the
parameter [N(l-Dﬂ -1 1g calculated at each
intersection for a given value of B, it is
approximately constant, too, Figure 4 plots
the observed relationship, which 1s well-
behaved for [N(I—Dﬂ =1l <1, The extrapolarion
method was checked for two simple example casas
(D=.95, N=100 and D=,98, N~150) and found to be
extremely accurate, as illustrated in Figure 4.

1,0
s 7

'0.31:—5 - .86 [N(1-D)]

0.6}—

0.4{—
Fraction, |-

s
0.2 ¢ Original Data
/ O check Cases
v
0,1 1
.01 5.1 1.0 10

[x(1-pj]
Figure & Extraprlation Parameter
RECOMMENDED USE OF RESULIS

1) Based on g, f, T  and t;, calculate

=]

D = e-2ﬂcf(to+to)

2) Use N and D and direct interpolation
of Fig, 3 to get the ‘normalized
response. If extrapoiation of Figure
3 18 required, get the normalized
response as follows: use equation (6)
for D < .5, and for D > .5 use Figure
4 to get B and then apply equation (8).

3) Calculate the worst case residual
regsponse to a single excitation using
the method described in reference [1],
and wultiply by the results of 2)
above to get the mean plus three-sigma
responee,

-
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DISCUSSION

The results described herein apply to the
residual displacement response of a vibration
mode excited by a sequence of simple forcing
functions. The only forcing functions eval-
uated in this study are lower in frequency
than the dominant response mode being investi-
gated. For relatively high frequency excita-
tions, the atatistical results do not apply
because the uniform distribution sseumed for <
is no longer equally likely to correapond to
spectral peaka and valleys. In addition, the
results presented assume that all sequential
excitations have the same rise time parameter,

F from Figure 2, If F varies from excitation to
excitation, the statistical analysis approach
described here may be repeated accounting for
the specific F probability distribution.
Although these results are derived specifically
for triangular waveforms, the probability of 1
corresponding to a spectral peak or valley s :
similar for other waveforms and the results T3
should not be seriously compromised by this

factor. For these results to apply, it is more

important that all excitations in the sequence

are simllar to one another than it is for them

to resemble the triangular wave.
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ON DETERMINING THE NUMBER OF DOMI.!ANT MODES

IN SINUSOIOAL STRUCTURAL RESPONSE
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Blacksburg, Virginia 24061

lated transfer function data.

This paper addresses the problem of using structural dynamic transfer
function data to determine the number of vibration modes dominant in re-
sponse at a given freausuny. If two or more modes are closely spaced or
if response 1s influenced strongly by distant modes, then the number of
dominant modes may not be evident from examination of transfer tunction
plots, and quantitative methods may be required. Two relatively simple
methods whirh have been used previously are reviewed, and a more effective
new method, called the vector-¥it method, is described in detail. Ap-
plications of these methods are given with the use of numerically simu-

1, INTRODUCTION

At any particular frequency of excitation,
the steady-state sinusoidal response cof astruc-
ture is dominated by only a few of its indef-
initely large number of vibration modes. The
objective of modal testing is to measure speci-
fic parameters of the dominant modes such as
natural frequencies, damping values, and mode
shapes, When applicable, the best method for
determining the number of dominant modes in a
frequency band is simply to count resonance
peaks on transfer function plots. In such a
situation, modal parameters can then be calcu-
lated rather easily by modern curve-fitting al-
gorithms, most of which require the number of
dominant modes as an input value. However, if
two or more modes are closely spaced, or if re-
sponse is influenced strongly by modes whose
resonances are outside the frequency band of
interest, then peak counting may not reveal the
true number of dominant modes, and subsequent
curve fitting of transfer function data may
produce incorrect modal parameters and/or miss
modes entirely., But a quantitative method for
determining the number of dominant modes may
succeed where peak counting fails. If such a
method should reveal the presence of pre-
viously undetected modes, then careful curve
fitting or some other modal testing technique,
sLch as multiple-shaker tuning, might success-
fully separate the modes

The problem of determining the number of
dominant modes was discussed extensively some
years ago in connection with the number of
shakers required to separate modes in multiple-
shaker modal testing. Traill-Nash [1] intro-

duced the "effective number of degrees of
freedom” at a grven frequeniy, which he de-
fined as being the number of motion coordi-
nates required to represent with accuracy
structural response at that frequency. He
concluded that the number of shakers must
equal or exceed the effective number of degrees
of freedom. Bishop and Gladwell [2] sugges-
ted a relationship between Traill-Nash's
etfective number of Jegrees of freedom and

the number of dominant modes; subsequently,
Asher [3] implicitly equated these two num-
bers. He ther stated, in effect, that the
number of shakers required equals the number
of dominant modes. This centention is rot
generally true; the number of distinct general-
ized force distributions must equal the number
of dominant modes, but there is no necessary
relationship between the number of general-
ized force distributions and the number of
discrete forces. Nonetheless, Asher made a
significant contribution by proposing probably
the first quantitative methods to determine
the number of dominant modes by analysis of
transfer function data.

This paper describes the theoretical
basis for such a quantitative method, reviews
the methods discussed by Asher, proposes a new
and more effective method, and illustrates
these methods with the use of numerically
simulated transfer functinn data.

IT1. THEQRETICAL BACKGROUND

Consider a 1inear structure discretized
to n degrees of freedom, the time-dependent




responses of which are elements of the n x 1
column matrix x, (Notation is listed at the
end of the paper.) The governing matrix equa-
tion of motion is

(M

where [m], [c], and [k] are the n x n inertia,
damping, and stiffness matrices, respectively,
and f is the column matrix of time-dependent
forcing. We specify that all forces vary
sinusoidally at the same frequency, w, and
that all have 0° or 180° phase,

() x + [c] x4 [K)x=f

f = F cos wt = Re {f e1wt% (2a)

After starting transients have decayed away,
response is steady-state sinusoidal,

eimt

x = Re{g (2b)

where the elements of amplitude vector X are
generally complex, reflecting phase differences
between excitation and response., The linear,
frequency-dependent relationship between ex-
citation amplitude and complex vespnnse ampli-
tude is defined by the n x n transfer function
matrix [H(w)],

X = [H()] F (3)

The standard real modal analysis solution
of equation (1) for [H(w)] begins with calcula-
tinn of the real undamped natural frequencies
War T E 1, 2, ..., n, and the assoriated real

mode shape vectors $ps which are the columns

of modal matrix [¢] (Meirovitch [4]). Subse-
quently, response coordinates X1 are trans-

formed into normal coordinates whic.. diagonal-
ize the mass and stiffness matrices of equa-
tion (1); then tne normal coordinates are
calculated by matrix inversion, and X is calcu-
lated from the normal coordinate solution in
the form

X = [e] [S(w)]F

where [S(w)] is an n x n complex matrix, Hence,
the transfer function matrix is

(H(w)] = [o] [S()]

and any column, say the jth, of [H(w)}] can be
written as

n

ﬂj(“’) = z Sr'j(“"" P J=12,...n (4)
1

Thus, each ¢olumn of the transfer function
matrix can be expressed as a summation of the
n linearly independent mode shape vectors. If
we consider some subset p < n of degrees of
freedom and define the corresponding p x 1
incomplete ;th transfer function column as

20

= b i et

Hj(w). then equation (4) gives
n

) = Y

r= |

S‘.J(N) Q;a J=1,2,...,n (5)

where the degrees of freedom included in each
p x 1 incomplete mode shape vector g% are the

same as those included in H;. Although the
summation in equation (5) ekXtends over all
modes, only p of the n g; vectors are inde-
pendent.

1f damping matrix [c] were to couple the
undamped normal modes (i.e., if [¢]Jt [c] [¢]
were not diagonal), then the use of undamped
normal modes as outlined above would be com-
putationally inefficient, and we would prob-
ably solve for the transfer function matrix
with an appropriate complex modal analysis
employing complex eigenvalues and mode shape
vectors. Nevertheless, the solution for each
column of the transfer function matrix could
st111 be expressed in the forms of equations
(4) and (5), that is, as linear summations of
n mode shape vectors, where in this case the
¢, would be complax vectors. The important

fact, expressed in the language of matrix
theory, is ihat each transfer function column
ﬁJ is an element in the n-dimensional vector

space spanned by the n mode shape vectors,
whether they be 'eal or complex; similarly,

~each incomplete column 33 i5 an element in

the p-dimensional vector space spanned by any
p linearly independent incomplete mode shape
vectors.

A useful veneral characteristic of struc-
tural dynamic behavior is that very few of a
structure's many vibration modes are sensitive
to excitation at any given frequency. These
few modes then dominate the response at that
frequency. [f there are q such dominant
modes at frequency w, then the mathematical
statements of their dominance, from equations
(4) and (5), are

Hyto) = Z Sps(u) g 3= 120000 (6)
q

}j}(w) : Z Srj(w) ?;l J= 12, (7)
q

wherez denotes summation over only the

q
q dominant modes. In eouation (6), the q mode
shape vectors associated with the dominant
modes nenerate a q-dimensional subspace of the
original n-dimensional vector space. The ap-
proximate equality in equation (6) means that




each Uj(w) column can, with small error, be

considered an element of the subspace. In
equation (7), the p x } incomplete mode shape
vectors associated with the dominant mo les
generate a q-dimensional subspace of the orig-
inal p-dimensional vector space, provided that
> q. Again, the approximate equallity means
that each 53 (w) column is approximately an

element of the subspace,

Most current methods of modal testing are
capable of measuring incomplete transfer func-
tion column vectors over a frequency band of
interest. The jth column H% represents physic-

ally the complex response amplitude of motion
sensors at p stations on the test structure
due to sinusoidal forcing excitation of unit
amplitude at the jth station, which does not
necassarily coincide with any of the motion
sensor stations, If excitation is applied
successively to k different stations, then
vectors ﬁj. J=1,2,...k, can be measured,

They are the columns of the p x k incomplete
transfer function matrix [H*g. (It is gener-
ally impossible to measure the complete matrix
[H], since a continuous structure has an in-
definitely large number of degrees of freedom.)

If the structure being tested respends
linearly, then each H% column is represented

mathematically by equation (7), which, there-
fore, is the basis of the methods discussed in
Section III below for determining the number of
dominant modes from experimental transfer
function data. Each method estimates the num-
ber g of dominant vectors ¢; in equation (7),

given k experimental p x 1 vectors ﬁg.

One practical requirement for the correct
use of equation (7) in the present context is
immediately evident: since p must exceed g,
as discussed above, the test engineer must

guess an upper bound Iimax for the number of

dominant modes likely to be encountered, and
then he must install more than Imax distinct

motion sensors, This requirement does not
present a significant practical obstacle, since
Imax for most structures should be on the

order of ten or less, It is assumed in the
remainder of the paper that the nunber of
motion sensor measurements avdilable for
analysis 1s always greater than the number of
dominant modes.

In vehicle modal testing, it is usually
feasible to install a substantial number of
motion sensors, but the number of exciters or
excttation stations is often much smaller due
to practical limitations. Hence, we assume
that k < p in most of what follows.

111. QUANTITATIVE METHODS FOR DETERMINING THE
NUMBER OF DOMINANT MODES

I11,1 TRANSFER FUNCTION DETERMINANT METHOD

This method involves analysis of square
transfer function matrices, which are formed
by the use of only k of the p available
motion sensor measurements, Thus, [H*] is a
k x k matrix. If, in the first case. the
number of exciters is less than or equal to
the pumber of dominant modes, k < q, then
according to equation {7), the k columns of
[H*] generally will be linearly independent;
hence [H*] will be non-singular and its deter-
minant will be non-zero, det [H*] # 0 for
k < g. But if the number of exciters {is ir-
creased until it just exceeds the number of
dominant modes, k = q + 1, then tha k columns
will be approximately dependent, so that [H*]
wilil be nearly singular and its determinant
will be close to zero, det [H*] = 0 tor k > q.
The strategy for application of this method,
therefore, is to add rows and columns of data
te the transfer functicn matrix in unit steps
until the value of k is found for which
det [H‘]1= 0; then the conclusion is that
q=k-=-1.

This is a very simple method to apply,
but 1t has some deficiencies. First, trans-
fer function determinants are complex, so one
must assess the possibly non-monotonic pro-
gression toward zero of a sequence of complex
numbers. Second, the restriction to square
transfer function matrices is undesirable be-
cause it prevents the use of ail available
notion sensor data. Both of these deficien-
cies are eliminated with little additional
effort by the use of the Gram determinant
method described below, so there appears to be
no reason to develop further or test the
transfer function determinant method. We note
that Ibrahim and Mikulcik [5] employed a simi-
tar method, but with filtered transient re-
sponse data, and found it quite satisfactory.

[11.2 GRAMDETERMINANT (GRAMIAN) METHOD

This method involves analysis of a rec-
tangular p x k transfer function matrix,
[H*]. The Gram matrix of [M*] is defined to
be a matrix product,

(8,1 = [A*1" (W)
where the overbar indicates complex conjugacy.
By this definition, the Gram matrix is a

k x k Hermitian matrix. The Gram determinant,
or Gramian, is defined to be

K)o get (6,]

It can be proved that the Gramian is real
and non-negative.




The Gramian of a transfer function matrix
is a quantitative measure of the degree of
linear dependence of the column vectors, 53.

J=1,2,...,k. Spacifically, the set of vec-
tors is linearly dependent if and only if the
Gramian is zero (Hildebrand [6]). Moreover,
it 1s reasonable to expect that 1f the set of
vectors is almost but not precisely linearly
dependent, then the Gramian should be nearly
zero, As {s discussed in Section III.1, any
q or fewer columns of [H*] generally are
linearly independent and, hence have non-zero

Gramians.G(k) >0 for k = 1,2,....,9. But any
set of more than q columns will be approximate-
1y dependent and have very small or zero

Gramians, G kls g for k > q + 1. Therefore,
the basic strategy for application of this
method 1s to add columns of data to the trans-
fer function matrix in unit steps until the

value of k is found for which G(k = 03 then,
the conclusion is that q = k - 1.

It is necessary in applying this method
to separate the change in Gram determinant
value due to change in degree of linear de-
pendence from that due simply to change in
determinant size. If, for example, all Gram
matrix elements are numerically of order

10'2, then, without change in degree of linear
dependence, 6 Wil be of order 1072, 62

of order 10'4. g(3 of order 10'6. and so
forth. This characteristic of determinants
will obviously mask the Gramian test for
linear dependence unless Gram matrix elements
are of ordar 1, In applications of the Gra-
mian method, the authors have attempted to
minimize the masking by normalizing each col-
umn of [H*] so that the corresponding diagonal
element of the Gram matrix is 1, i.e., (H],

53) =1, J = 1,2,...,k, where H* here denotes

the normalized column rather than the original
column in physical units. The numerical re-
sults of Section IV.3 suggest that this ad hoc
measure 1s effective in filtering out Gramian
variation with Gram matrix size.

Asher [3] described and discussed both
the transfer function determinant and the Gram
determinant methods. He recognized that in
applying either method, one might find it dif-
ficult to decide how small a generally non-
zero determinant value must be in order to
indicate linear dependence correctly. The
numerical results of Section IV.2 confirm that
the ahsence of a definite smallness criterion
is indeed a weakness of the Gramian method.
Even though all Gramian values are referenced

10 G(]) = ] by virtue of the normalization
procedure described above, examples for dif-
ferent situations show Gramian values

G(q + 1) of orders ]o‘], 10’2, and even 10~3.
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Another deficiency of the Gramian method
is that it can correctly indicate linear
dependence, yet underestimate the number of
dominart modes. To understand how this can
happen, consider a simple example in which
there are two dominant modes. The analysis
of three given, distinct transfer function
vecters, denoted UTR7Y and Vg then should

indicate two niodes. The set of three vectors
is linearly dependent, but suppose also that
Yy and v, are independent and 1 and vy are

dependent. If the transfer function matrix
fs defined as [H*] = [y, vy, v4]s then M,

G(E) > 0, and G(3) = 0, leading to the correct
conclusion that q = 2, If, on the other hand,

we define [H*] = [yI. Vg yz], then ). 1

and G 2) = G(a) = 0, leading to the incorrect
conclusion that @ = 1. An instance of this
particular case occurring in a realistic
situation Is presented in Section IV.3. (See
Figures 12b,c and the associated discussion.)
It is clear that the ordering of vectors in
the p x k transfer function matrix affects all

Gramian values except G(]) = 1 and G(k , which
is invariant with column and row ordering.

The Gramian method then has some serious
weaknesses, Perhaps for this reason, it
apparently has not been employed widely. The
authors have located only one published ap-
plication, that by Klosterman %7]. The vector-
tit method to be discussed next is, to a con-
siderable extent, free of the weaknesses of
the Gramian method.

111.3 VECTOR-FIT METHOD

A concept analogous to the numher of
doninant modes of a vibrating structure is
that of a "best approximating subspace".
Cliff [8] discussed this concept in the con-
text of control theory. Given a set of k p-
dimensional vectors, one can calculate the
particular m-dimensional basis (m < k) which,
among all possible m=dimensional bases, does
the best job of approximately spanning the
set of k vectars, with error minimized in the
least-squares sense. In other words, the k
vectors are "“fit" to the best apprvoximating
m-dimensional subspace. The method developed
here to solve for the number of dominant
modes follows Cliff's general apprcach; hence,
it is referred to as the vector-fit method.

Given the p x k transfer function matrix
[H*] for frequency w, the general stepwise
procedure for application of the vector-fit
method 15 as follows:

1. A particular p-dimensional complex unit
vector u, 1s calculated from [H*]1. A-

mong all possible unit vectors, ' alone

o




has the property of producing the best,
in a sense to be defined, set of one-
term approximations to the transfer func-
tion colums. This set of approximations
takes the form

Uj s CJ" l."l' J* 120000k

where the C” generally are complex con-
stants. Next, the real scalar error E !
associated with this set of approxima-
tions is calculated.

2. A second unit vector uy is calculated.
It {is orthogonal to U Amcng all pos-
sible unit vectors orthogonal to Y Yy

alone has the property of producing, in
conjunction with Uy the best set of two-

term approximations to the transfer func-
tion columns. This set takes the form

2

Hy = Z P I A

t =

Next, error E(z) associated with this set
of approximations is calculated.

m.  The mth unit vector u  1s calculated. It
is orthogonal to all other u,, 1 =1,2,
..y m=1. Vector Yn has the property of
producing, in conjunction with Y, Ypo
veny Yo qe the best set of m-term approx-

imations to the transfer function columns.

This set takes the form

m
ﬂj = 12] CJ.' 91’ J=1,2,..., k

Next error E{™) associated with this set
of approximations is calculated.

.

Each step introduces a refinement of the ap-
proximation, so the error diminishes in each

step, E(m) < E(m']). 1f, after m > | steps
of this procedure, we find that AL

relative to E 1 , then we may reasonably con-
clude that the set of transfer function vectors

is spanned approximately, with very small
error, by an m-dimensional basis. According
to equatfon (7), then, there are m dominant
modes at frequency w, f.e., a = m. It is
quite unlikely that the veccors Yy will be

identical to the rmode shape vectors 97 of
equation (7), since the uy are orthogonal by
definition while the ¢% need not and generally

wil) not be orthogonal. Nonetheless, it is
certain that both sets u, and ¢y span the

same q-dimensional vector space.

If p < k and the procedure is carried

through p steps, then E(P) z 0 since the p
independent Yy exactly span p-dimensional

space. If, on the other hand,k < p and the
procedure is carried through k steps, then

E k) z 0 since the k independent Y exactly

span the subspace defined by the k transfer
function column vectors. (This case is sim-
ply orthogonalization of a vector set, similar
to the Gram-Schmidt procedure.) Hence, in
order for the vector-fit method to produce a
correct evaluation of the number of dominant
modes, it is necessary that p and k each must
exceed q. That is, the test engineer must
provide both more motion sensors and more
excitation stations than the maximum number
of dominant modes 1ikely to be encountered.
In application, the method ftself indicates
if too few motion sensors or excitation sta-
tions have been used, and this is illustrated
in Section IV.3.

It is worthy of note that each of the
three methods described for identification of
the presence of q dominant modes requires a
minimum of q + 1 motion sensors and q + 1 ex-
citation stations.

The theory associated with the calcula-
tions discrssed above is developed next. Let
a basis for p-dimensional space of complex
vectors consist of p orthogonal unit vectors
Ups Upseoas Uy Which are unknown at this

point. Any transfer function column vector
ﬂj. j=1,2,...,k, can be expressed as the

summation

m p
el 220 D ) (Een)

i=1 f=m+

The basis vectors are orthogonal in the Her-
mitian sense, so

m p
(Fj’ }.43) = 2 + Z (gi'tig)(ﬁj"ﬂ)
=1 i=mH




Hence, we may define as follows the squared
scalar error associated with approximation of
Uj as a series sum in only the first m basis

vectors,

U Y T

f=mtd

m

The appropriate total or global error, defined
in the least-squares sense over all H¥, is

k ) 172 k
Sl PG R P
k m 1/2
- JZ'I 121 (gi’ Hj) (Fj’ 9‘)

For given m, we wish to determine the basis
vectors u,; so as to minimize E(m) by maximizing

the double-summation term. With a few steps
of matrix algebra, that term is cast into the
more useful form

k m n

3N )y - Y By

J=11=1 f=1

where {A] = [H*] [A*]* 4s a p x p Hermitian
matrix with p real non-negative eigenvalues
A zAyz e 24,20 and p corresponding com-

plex, mutually orthogonal unit eigenvectors
Yis Vs s ?p' Thus, for given m, we wish

to minimize

k mn 1/2
n — -
e [N @ - ) Ty
J=1 i=1
Consider first m = 1. The maximum value as-
sumed by the Hermitian quadratic form gt[A] Y
is equal to the largest eigenvalue A1‘ and
this maximum results if uy = 2 {Franklin [9]).
Hence, the minimum associated error is

) k 172
h e | 2 @y
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Next, for m = 2 we wish to minimize

k 1/2
(2) . ; RV
E (B0 ) - 2y - yplAd
3=
Far a1l possible u, orthogonal to uy = v,
the maximum value assumed by quadratic form
QE[A] u, is equal to the second efgenvaiue
Ay and this maximum results if u, = y,
(Franklin [9]). Thus,

k 2 1/2

(2) . T .
Emin * (HH' ﬂj) M
j=1 i =1
This reason?ng can be extended easily to show

that the minimum 2rror for arbitrary m (1 < m
<p) s

e - Z (s, ) - 12“1 W NG

where u; = @1. To simplify notation, 1t is
understood in equation (8) and in the discus-

sion and numerical examples to follow thatE(m)

denotes the minimum error, even though sub-
script min is deleted.

We can now reiterate and sumnarize the
vector-fit method for determining the number g
of dominant modes at a given frequency. From
the p x k transfer function matriy [H*], the

p x p Hermitian matrix [A] = [H*][ﬁ*]t is
formed. It is necessary that p > q + 1 and
k>qg+ 1. Next, the real eigenvalues of

[A],A.| 2 hp 2 wew 2 A > 0, are calculated.
Next, form =1, 2, ..., p, the minimum error
values are calculated from equation (8). The

smallest integer m for which E(m) * 0 relative

to E(]) then is equal to the number q of
dominant modes. Note that the eigenvectors of
(Al, ;v ¥ps s ¥, Need not be calculated.

It car be proved easily that the error

values E(m) are entirely independent of the
numbering or ordering schemes used to identify
motion sensors and exciters or to arrange
elements in the transfer function matrix. In
other words, any of the rows of [H*] can be
interchanged and/or any of the columns can be
interchanged without changing the values of

E(m). Hence, the vector-fit method has no
weakness comparable to the dependence on vec-
tor ordering of the Gramian method.
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IV. NUMERICAL SIMULATION STUDY

Two mathematical models have been used
for numerical simulation of experimental ap-
plication of the vector-fit and Gramian meth-
ods., The models were designed to have fre-
quency bands of high modal density with pre-
scribed numbers of dominant modes. The basic
objective of the numerical study then was to
determine 1f the vector-fit and Gramian meth-
ods are capable of correctly determining the
number of dominant modes. Other objectives
were to compare the two methods and to develop
guidelines for applying the methods and in-
terpreting the results.

To simplify calculations, it was speci-
fied that each model have hysteretic damping
which does not couple the undamped normal
modes. Hence, transfer function matrix ele-
ments were calculated exactly from the equation

n
[4

H, . = % *4r

1] M 2 2
r=1 0t () - ) 4 gy

Yp

where 4y is the i1th element of the complete
mode shape vector ¢., M, = Q:[m] p is the

generalized mass of the rth normal mode, and

), and 9, are, respectively, the natural fre-

quency and hysteretic damping of the rth mode.
iV.1 TEN-MODE MQODEL

The mode shapes of this model are those
of the first ten out-of-plane vibration modes
of the uniform stretched membrane shown on
tigure 1,

m_mx n oy
- i § P
o4p = A sin ( 1.3)5‘" ( 1.0)

Parameters
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Fig. 1 Stretched membrane faor mode
shapes of ten-mode model

where integers . and N, are the numbers of

half-wavelengths for the rth mode listed in
Table 1, Xy and vy are coordinates of the mo-

tion sensor/exciter stations shown on Figure 1,
and constant Ar for the rth mode is chosen so

that the numerically largest mode shape ele-
ment equals one. Other modal parameters, as
listed in Table 1, are not those of the uni-
form membrane, but rather were selected to
produce a mathematical model with four very
closely spaced modes in the vicinity of 100 on
the frequency scale and six more modes out-
side the region of high modal density. Thus,
q = 4 in a frequency band of roughly three
units centered at 100, so the methods under
study, 1f successful, should indicate accord-
ingly. Since this model has limited physical
significance, all quantities are considered to
be dimersionless.

TABLE 1

of ten-mode model

r 1 2 3 4 5 6 7 8 9 10
wp 67.6 82.0 91.2 93.9 99.4 100.1 101.4 110.7 117.6 132.3
9, 0.0t 0.017 0.007 0.021 0.019 0.023 0.024 0.026 0.027 0.03
M. 0.02 0,009 0.01 0.012  0.0Mm 0.01 0.009 0.01 0.013 0.009

m_.Nn 1,1 2,1 1,2 31 2,

2 3,2 1,3 4,1 2,3 4,2
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Figs. 2 Fifteen-degree-of-freedom model:
(a) pictorial view with
translation dof; (b) plan view

IV.2 FIFTEEN-DEGREE-OF-FREEDOM MODEL

This model, unlike the ten-mode model, 1is
based entirely on a physical structure, the
cantilevered, rectangular plane grid shown on
Figures 2a and b. The model was designed to
have two modes with nearly identical natural
frequencies, as shown in Table 2. To achieve
such close modes, an optimization technique
similar to that of Hallauer et al. (10] was
used.

TABLE 2

Each elastic member of the model is a
steel bar having Young's modulus E = 200 GPa

(29 x 106 psi), shear modulus G = 82.7 GPa

12 x 105 psi), and diameter of 6.35 mm

0.25 inch). (The fundamental units of pounds
inches, and seconds were used in all calcula-
t10ns.5 Each bar may twist about 1ts axis

and bend out of the grid plane, and each is
clampad at both ends by either the rigid sup-
port wall or a rigid cylindrical joint member
of 0.051-m (2-inch) diameter. The five node
points of the model are the intersections of
the bar centerlines in the grid plane. The
fifteen degrees of freedom then consist of one
out-of-piane translation and two out-of-plane
rotations of each node point, The transla-
tions are identified in Figure 2a, and the ro-
tations of node 1, for example, are identified
in Figure 2b. The nodal lumped mass and mo-
ment of inertia (for both rotational dof) as-
socfated with each rigid joint are listed in
Table 2. To account approximately for dis-
tributed inertia of the bars, finite element
consistent mass matrices were used, with bar

density taken to be 7859 kg/m3 (7.3536 x 107

1b-sec2/1n4). Modal hysteretic damping con-
stants g were specified to be 0.015 for modes

1 and 2, 0.018, 0.022, and 0,026 respectively
for modes 3, 4, and 5, 0.03 for modes 6-10,
and 0.035 for modes 10-15.

IV.3 RESULTS AND DISCUSSION

Consider first the ten-mode model. Typi-
cal transfer functions are shown on Figures 3a
and b, with the coincident (co) or real parts
and the quadrature (quad) or imaginary parts
plotted separately. Qualitative inspection of
these and other transfer functions seems to
indicate the presence of only two dominant
modes in the vicinity of freguency 100. But
there are actually four dominant modes in that
region, as listed in Table 1.

Inertia parameters and close modes of fifteen-dof model

Inertia parameters

Close modes

Mass Moment of inertia r 3 4
Node kg 1073 kg-m? wp(r/s)  149.18  149.22
! 0.5114 0.5570 . 1.000  1.000
1]
2 1.4994 1.7199 . 0.031  -0.274
3 2.0390 a.1627 - 0.406  -0.444
4 0.4756 0.1154 o -0.421  -0.236
+
5 2.0424 4.1833 bgp 0151 0.216
26
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Figs. 3 Typical transfer functions for the
ten-mode model: (a) Hy 3(w); (b)
’

H7’7(w)

To begin numerizal application of the vec-
tor-fit method, we examine first errors cal-
culated from the complete 10 x 10 transfer
function matrix. Such a large matrix will not
generally be required, but examining this case
first establishes a reference and provides
guidelines for interpreting the error values
and, more generally, for applying the method.
Since transfer functions are usually plotted
versus excitation frequency, it seems natural
and, 1in fact, proves advantageous also to cal-
culate and plot error values versus excitation

frequency. Errors E(m ,y m=1,2,...,10, for
the complete transfer function matrix were cal-
culated from equation (8) and are plotted on
Figure 4. Note the relatively large variations

with frequency and the peak1n? of E(1), E(z)'
and E(3). Note also that 5(4 is on the order

27

750

x
E 1,315
. bl 51 )
— ye € ya £ /“E
y 4 ll
R = S = ——————
v ¥ requency O B

Fig. 4 Reference error graph for the
ten-mode model with all motion
sensors and all exciters

of 10% of the maximum value of E(]), and that

E(4) varies only slightly with frequency. As
stated in Section II[.3, the result that

E(4) << E(]) indicates that there are four
dominant modes. But it is also important that

E4) 0 and that /4, EO5), etc. vary stowly
with frequency in comparison with ! , E 2),

and E 3 . From these observations, we conclude
that four modes dominate but do not complete-
ly describe the response in this narrow fre-
quency band, and that the contributions of
distant modes remain relatively constant in
this band. Both conclusions are quite reason-
able in view of the nature of the ten-mode
model. Thus, this reference case suggests
that in examining graphs of error versus fre-
quency, we should use not only the basic cri-

terion E(q) << E(]). but also the additional

\
criteria that £49) 7 0, that €690, gla M,
etc. should vary slowly with frequency in com-

parison with (1), g2 gla - 1 and
that plots versus frequency of E(]). E(z).

vees gla- 1 should exhibit peaks. An ex-
ceptional case for which all these criteria
might not apply is that of a distant mode con-
tributing significantly to response. In this
case, we might expect to find a relatively

large, slowly varying, and non-peaking E(m)
for m < q.

Figures 5 a-d are plots of errors cal-
culated from responses at seven motion sensor
locations due successively to excitation at
three, four, five and six locations, This
simulates a realistic testing approach in which
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Figs. 5 Error graphs for the ten-mode model with motion sensors 1,
2, 5,6, 8,9, 10: (a) exciters 1, 6, 9; (b) exciters 1, 2,
6, 9; (c) exciters 1, 2, 6, 8, 9; (d) exciters 1, 2, 6, 8,

9, 10

very few exciters are applied initially,
and additional exciters are applied
as required. In Figure 5a for three exciters,

E(z) is not much smaller than E(I). and E(3)
=0, as required by the theory of Section III.3.
(The very small non-zero values on this and
other computer-generated plots are due to
round-off errors.) Clearly, more exciters

are required to indicate correctly the number
of dominant modes. The addition of a fourth
exciter (i.e., another column in [H*]) leads
to Figure 5b, which also indicates the need
for at least one more exciter, With five

exciters, however, Figure 5c shows that E(4)
varies slowly with frequency and is non-zero

yet much smaller than E ! . We conclude,
therefore, that q = 4. Figure 5d for six ex-
citers substantiates the conclusion.

o B
[/—ﬂ“ yAyas 7/"
0 L J Ju i 1 1 e —,14 - e 7 - I “B
9 #® reovtncy 10 ! ¥ requency O

Unfortunately, interpretation of the er-
ror plots is not always as unambiguous as 1t
appears to be with Figures 4 and 5. There is
a definite dependence on the motion sensor and
exciter locations represented in the transfer
function matrix. These points are illustrated
on the error plots of Figures 6 a,b, and ¢,
which were calculated for different sets of
motion sensor/exciter locations than those of
Figures 4 and 5. Figure 6a for five motion
sensors and five exciters can be interpreted
as indicating four dominant modes; but this
interpretation is substantially weaker here

than for Figures 4 and 5¢,d since E(3) on Fig-
ure 6a is only slightly peaked and is very

small relative to E ! . Figure 6b for six
motion sensors and six exciters is ambiguous;
one might infer that it indicates three, four,
or five dominant modes, with three being perhaps
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Figs. 7 Gramian graphs for the ten-mode
model with all ten motion sensors:
(a) all ten exciters applied in
forward order, 1, 2, . . ., , 10;
(b) all ten exciters applied in
reverse order, 10, 9, . . . , 1

1
o B3

a r the most 1ikely interpretation. Figure 6c,
g L also with six motion sensor/exciter locations
! = but one different location than Figure 6b,
{ permits a somewhat more certain interpretation
= ! N of four dominant modes.
L o @ One can observe from the vertical axis

3 — ) scales on Figures 4 - 6 that all non-zero
.4i::l-1,4f:_,‘.-u—-""“F’_ﬁ""““‘*-~———_—q error values tend to increase as columns are

added to the transfer function matrix. This

0= b e —— . ) tendency appears not to have any useful sig-
w ¥ reovency O nificance.
! Figs. 6 Error graphs for the ten-mode model: .
i (a) motion sensors/exciters 2, 3, 4, Next, we examine the Gramian method as
: 7, 8; (b) motion sensors/exciters 2 applied to the ten-mode model. Figure 7a is
1 ; 3: 4: 7,8, 10; (c) motion sensors/’ a graph of Gramians plotted versus frequency

in the region of high modal density. Gramians

2, 3,4,6,
exciters »4,6,8,10 ¢l1) . g00)

were calculated from complete
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transfer functions for the ten-mode
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values, long dashes for modes 4, 5,
6, and 7, and short dashes for modes

! 4 and 6: (a) H3.3(w); (b) H7'7(m)
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10 x 1 transfer function vectors, with the vec-
: tors applied in the order of the station num-
;g bering shown on Figure 1, i.e., 1, 2, ..., 10.
% : Recall that the identification criterion for

this method 1s 619*') = 0, where 6{1) < 1 by
virtue of transfer function vector normaliza-

TRANSFER FUNCTION mmMN

tion. So 6'5) should be nearly zero in this 0.0 L L Y3 L A
5 : case. A tabulation (not included) of G(s) for FREQUENCY radisec

Figure 7a shows values in the ranges 10°3 and
1074, Figure 7b is a graph of Gramians L Figs. 9 ¥:;2§:ﬁfdg:n;§;g?f f?;)tD: (w3

G(]O) also calculated from 10 x 1 transfer (b) H (w)s (c) H ( )'
function vectors, but with the vectors applied 4,10M7 1,13
in reverse order of the station numbering,

f.e.0 10, 9, ..., 1. Values of 65) for Figure
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Figs. 10 Error graphs for the fifteen-dof
model with motion sensors/exciters
1, 4, 7, 10, 13: {(a) in the re-
gion of a single isolated mode;
(b) in a region of very little
wodal activity

7b are in the ranges 10°Y and 1072, The vast
differences between the curves on Figure 7a
and those on Figure 7b illustrate the vector-
ordering dependence of the Gramian method, and

the different magnitudes of G(s) on the two
graphs illustrate the indefiniteness of the

smallness criterion, alat!) . g,

Finally for the ten-mode model, Figures
8a and b demonstrate the significance on typi-
cal transfer function plots of the dominance
of four modes. These graphs show exact coin-
cident and quadrature values of H3 3(w) and

H7 7(u). aprroximate values calculated from
1

only the four dominant modes, and approximate
values calculated from only modes four and

31

six, two of the dominant modes. Whereas modes
four and six alone dominate H3 3 all four of

the close modes make comparabla contributions
to H7 7¢

Consider next the fifteen-dof model,
which has the pair of close modes listed in
Table 2. In testing of this model, 1t would
be natural to instrument and to provide forc-
ing excitation at the five translation degrees
of freedom shown on Figure 2a, so we will
analyze the 5 x 5 incomplete transfer function
Qatrix associated with those degrees of free-

o,

Figures 9a,b, and c are selected transfer
functions in a narrow band about the close
natural frequencies. Figure 9a for H] ](m)

A

has the character of most transfer function
elements in this frequency band, namely, it
seems to indicate only a single, fsolated
mode, Figure 9b for H4 ]o(m suggests the

presence of more than one mode, but the asym-

metry of the coincident response curve would

probably be attributed to a distant mode

rather than to ¢lose modes. Of all tha ele-

ments of the 5§ x § [H*], only H ]3(m) shown
1]

on Figure 9c provides definite evidence of
the presence of two close modes. But both
H4 10 and H1 13 have such small magnitudes

relative to H1 1 that, in actual testing,

they would probably be lost in noise or ig-
nored. So it is fair to say that qualitative
examination of the transfer functions indi-
cates the presence of only a single mode at
149.2 rad/sec.

Before examining error plots in the re-
gion of the two close modes, it is useful to
have as a reference an example of error plots
at and near a single isolated mode. The
second mode of this model, with a natural
freguency of 67.5 rad/sec, is quite distant
from all other modes., Figure 10a is the graph
of error values around this mode for the
§ x 5 [H*]. For comparison, Figure 10b is the
graph of error values in a region of almost
no modal activity between the second and
third modes. The error scales of both Figures
10a and b are quite small (relative to that
of Figure 1la discussed below), and neither
figure has any error peaks. The only sig-
nificant difference in character betw2en the
two figures 1s the numerical noise at and
near the natural frequency in Figure 10a, due
to accumulated round-off error in eigenvalue
calculations.

Figures 11a and b are graphs of error
values in a band around the pair of close
modes, the former for excitation at all five
translation degrees of freedom, and the latter
for excitation at only three. On the basis of
all criteria developed previously and in

[
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Figs. 11 Error graphs for the fifteen-dof
model with motion sensors 1, 4, 7,
10, 13: (a) exciters 1, 4, 7, 10,
13; (b) exciters 1, 10, 13

comparison with Figure 10a, these graphs indi-
cate clearly and indisputably the presence of
two dominant modes.

GRAMIAN

Figures 12 a, b, and c are graphs of Gra-
mians in the region of close modes. Fiqure
12a for five exciters applied in the order 1,
4, 7, 10, 13 seems to indicate clearly that
q=2. S50 also does Figure 12b for three ex-
citers applied in the order 13, 1, 10. How-
ever, Figure 12¢c for the same three exciters
applied in the order 1, 10, 13 seems to indi-

0
cate just as clearly, though incorrectly, that W3.2
q=1.

In summary of the discussion of theory Figs. 12
and the numerical simulation study, the vector-
fit method is distinctly superior to the Gra-
mian method for the purpose of determining the
number of dominant modes. The only advantage
of the Gramian method is that it requires sub-
stantially less computation time. As has been

49.2 155,2
FREQUENCY radisec

Gramian graphs for the fifteen-dof
model with motion sensars ¥, 4, 7,
10, 13: (a) five exciters anplied
in the order 1, 4, 7, 10, 17; (b)
three exciters applied .in the order
13, 1, 10; {c) three exciters ap-
plied in the order 1, 10, 13

A b 1 WA




demonstrated, the vector-fit method can produce
error plots which are difficult to interpret
correctly. But results of the simulation
study suggest that the use of a large number
vf motion sensors in calculation of the error
values will reduce the likeYihood of mis-
taken interpretations. Theoretically, a mini-
mum number of g+l motion sensors are required,
however, it would seem prudent and usually
practical to estimate q and then to use sever-
2l times that number of motion sensors 1in cal-
culating error values.

We note that the vector-fit method is
valid regardless of the type of motion sensor
employed in testing, since the form of equa-
tion (7) remains the same for displacement,
velocity, or acceleration transfer functions.

V.  CONCLUDING REMARKS

The vector-fit method for determining the
number of dominant vibration modes from struc-
tural transfer functions has been derived
theoretically, illustrated with a numerical
simulation study, and compared with other
methods, The method works well with exact,
noiseless, similated data. However, its prac-
tical applicability has not been evaluated.

The logical next step is to test the method
with real data. If it should prove applicable,
it would be a useful analysis tool for modal
testing. Regardless of the type of testing
employed, the vector-fit method could provide
an independent check on whether or not all sig-
nificant modes had been detected.

-
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LATERAL AND TILT WHIRL MODES OF FLEXIBLY MOUNTED
L]
FLYWHEEL SYSTEMS

C. W. Bert and T. L. C. Chen’
School of Aerospace, Mechanical
and Nuclear Engineering
The University of Oklahoma
Norman, Oklahoma

High-petrformance, composite-material flywheel systems under curremt
development for energy-storage purposes differ from turbine and com-
presgor systems in that the flywheel rim is flexibly attached to the
hub. Thus, for whirling with gyroscopilc action, an axisymmetric
flywheel system hae four degrees of freedom, two associated with lat-
eral translation and cwo with tilting. In the Sandie Livermore apin-
test facility, the above system was driven by an air turbine which
added two more degrees of freedom. A six-degree-of-freedom analyuis
of such 4 syatem 1s presented here and applied tc two versions of a

specific design presently being developed.

INTRODUCTION

Currant engineering intevest in the fly-
wheel as an energy-atorage mechaniam for either
stationary or vehicular applications has direc~-
ted attention to .he dynamics of such a Bys-
tem [1]#. oOne flywheel confi nration currently
under investigation by Sardia Laboratories is a
high~rotational-speed systew conslsting of a
composite~material rim attached by means of

lexible composite-material bands (or spokes)
to a hub of finite mass which in turn 18 at-
tached to a relatively flexible shaft [2]. 1n
the spin tests conducted at Sandia-Livermore
test facility [3], the flywheel shaft is essen~
tially epupported as a cantilever at its top end
by rigid attachment to the turbine skaft, which
ir turn, is supported bty a pair of ball bear-~
ings. A schematic diagram of such a syetem is
shown in Fig. 1.

For this system both translational and
tilting motions take place. The translation
contributes to the development of a lateral
force due to centrifugal action, while the
tilting produces an inertial couple, including
gyroscoplc actlon, about a diumeter of the fly-
whe2l. The sense of this couple is such that
it effectively sciffens the system for modes
correspond’ag to retrograde (or backward) pre-
cession. 1lule gyroscopic effect on rotor

whirling was first investigated by Stodola [4]
in 1918, ‘See also [5].

Due to the flexible nature of the flywheel
banas, flywheel shaft, and turbine shaft, as
well as the finite mass of the xim, hubd (54X of
the rim mass) and turbine, the system is con-
sidered as a three-mass system, A few analyses
of multi-mass disk-shaft systems have appecred
in the literature; see, “or instance [6-8].
Unfortunately, however, thcse analyses are all
applicable to only the case where the flexible
members (portions of the shaft) ceonnect to
ground. In the pregent system, one flexibie
member (the bands) connects to an otherwise
free mass (the flywheel rim). To the best of
the present investigators' knowledge, the only
analyses even remotely applicable to such a
configuration are [9-11]. However, the analy-
ses in [9-10] are applicable only to a thin-
plate wheel, while McKinnon's analyeis [11]
considered a two-mass system with only three
degrees of freedom, since he considered the
radlal flexibility of the rim-to-hub connector
to be negligible.

The present analysis considers three
masses (rim, hub, and turbine) and six degrees
of freedom (translation and tilting for each
mass, as shown in Fig, 1).

* The research reported here was supported by the Department of Energy through a contract from

Sandia Laboratovies, Albuquerque, New Mexico.

+ Presently at the Engineering Mechanics Department, Research Laboratories, General Motors Tech-

nical Center, Warren, MI,

* Numbers in brackets designate References at end of paper.
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Fig. 1. Schematic diagram of the Sandia fly-
wheel system, as installed in the
Sandia-Livermore spin-test facility.

ANALYSIS

The system 1s depicted schematically in
Fig. 1, which has three masses and six gener-
alized displacements {g,} = (ry, ¢p, Tps Oh»
res ¢¢)T. It is noted that r and ¢ are
respective translational and tilting displace-
ments, while subseripts v, h, t refar to rim,
hub, and turbine respectively. The compliance
equations can be written in matrix form as
follows!

@) = ol 641,206 O

Here the generalized forces are {Q,} = (F.,
My, Fpy Mpy Fio Mt)T and the aiz Ara the com-
pliances. Due to the nature of the connection
between the rim and hub as well as the neces-
sary symmetry of the array as required by Max-
well's reeiprocal principle, some of the com-
pliance terms are repeated in the array, which
can thus be written as follows:

N S et g e i
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where Kpy and Kpop are band stiffnesses to
resist re-gective relative in-plane translation
snd out-of-plane tilting between rim and hub.
The valuew of Kyip and Kpop Iincrease not
only with the initgnl winding tension in the
bands but also with rotational speed due to the
centrifugal stiffening effect., The values of
aij can be obtained by using elementary beam
theory; however, shear flexibility ie included
in obtaining turbine shaft stiffnesses due to
its high diameter/length ratio. For the pur-
pose of completeness, equations for calculating
compliances and band stiffnesses are presented
in Appendices A and B respectively.

3)

The generalized forces are given by

2
- M = (I
I-‘r n,owor R (

r t wdr T Imarn)m¢r

2 i i )
Fpowm oty o Mo (T o= I, Mok
2

Fommowir, o, Mo (Lo L Duey

where @y, my, and mg are respective rim, hub,
aad turbine masses; Ipay, Ipgh and Ig,. are re-
spective rim, hub, and turbine mass moments of
inertia about the axis of rotation; Imdrs Imdh
and Ipde are the respective mase uoments of
inertia about a diametral axis; Q 418 the ro-
tationul speed; and w is the whirling fre-
quency.

Inverting Eq. (1) and using Eqs. (4), one
obtains the following equation:

2
([“111” - [Nij]w - [Kij]){qi) - 0
(i,j'l.Z....,G)

(5)

and have zero elements except for tle

where[ [Kij] is the inverse of [“1j]v [H11]
N
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One can reduce Eq. (5) to a astandard-type
eigenvalue problem, which minimizes the compu-
tations, by introducing the following defini-
tion:

() = wia) )

Using Eq. (7) in Eq. (5) and omitting the
subscripts, one obtains the following equation

o1 1 |fep (o}
S o T e
ORISR OREOIICR +)

Eq. (8) is in the form of a standard-type
eigenvalue problem. Thus, it can be solved by
using an existing eigenproblem code at each ro-
tational 8peed Q1 .

NUMERICAL RESULTS AND DISCUSSION

The numerical valuer of the various mass
and inertia parameturs for two different com-
posite-material flywheel syswtems are listed in
Table 1*% Each of the two systems have the
same rim, which 1is constructed of hoop-wound
graphite~zpoxy composite material and is de-
signed to achieve an energy-storage capacity of
0.56-kwn at 31,500 cpm.

hHystam A has flat-bund-type epokes of
aramid-epoxy unidjrectionol composite materlal
and la shown in Flg. 2. There are six complete
bands, il.e. the bands are located 30 degrues
apart eround the circumference. The bands are
wound with an ‘nitial tension of 360 lb and
pass cthrough and are bonded to slots in the hub,

Syatem B differs from System A primarily in
the fact that System B hias upokes which are
wound flat on to the rim but undergo & 90~
degree twist to b: wound on to axially oriented
pins at the hub. This twist and a lower initial
winding tension in the bands (90 1b for Sys-
tem B) results in higher in-plane compliance of
the bands, Howaver, the tilting compliance is
smaller. '

TABLE L
Maas and Inertia Parameters for Systems A and D B
System
B Quantity Symbol Units A i B
N-seczlr
Rim mass m, l-“‘ 0.075 (0.043) 0.075 (0.043)
(1b~sec™/1in)
Hub mass oy " " 0.041 (0.0235) 0.045 (0.0258)
Turbine mass n, " " 0.035 (0.020) 0.035 (0.020)
2
Rim mase moment of 1. N-cn-gec 36,33 (3.215) 36.33 (3.215)

inertia about its axis

Hub mues morient of Imah
inertia about its axie

"
Turbine mass moment of Imat

inertia about its axis

Rim mass moment of
inertia about a Imdr
centroidal diameter

Hub mass moment of

inertia about a Imdh v
centroidel diameter
Turbine mass moment
of inertia about a Imdt "

centroidal diameter

(lb-in-secz)

0.610 (0.054) 0.836 (0.074)

0.757 {0.067) 0,757 (0.067)

18,485 (1.636) 18,485 (1.636)
2.791 (0.247)

2,689 (0.238)

0,452 (0.040) 0.452 (0.040)

%%  The numerical values of compilances are given in Appendix A.
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Fig. 2 Plan view of one quarter of the Sandia
thick-ring flywheel (System A).

Both System A and System B have been spin-
tested at the Sandia Livermore spln test
faclility, in which the flywheel hub is mounted
to a shaft vhich is cantilevered from the
Barbour~S5tockwell alr-turbine drive assembly.

Solving the elgenvalue problem represented
by equation (8) by means of rout'ne EIGRF [12]
on an IBM 370, Model 158J digita! computer, one
obtains modal frequencies as a function of the
rotational speeds. Plots of these relationships
for Systems A and B are shown in Figs. 3 and 4.
These figures ave plotted in log-log form in
order to get them on the paper. All six modes,
with forward and retrograde branches for each,
are snown for completeness. It should be men-
tioned that the retrograde branches correspond
to negative whirling speeds, l.e., the direction
of rotation of the whirling 1s a direction
opposite to the direction of the running speed.

The intersectlons of the w vs. @ curves
with straight lines of the form w = nQ deter-
mine the so-called critical speede (Q.,) which
correspond to the values of running speed I at
which dynamic instability may take place. The
value n(= w/Q) 18 called the order of the
critical speed and 1t is usually either a posi-
tive or negative integer or its reciprocal.
Lines corresponding to n=+1 and n=+ 2
are shown in Figs. 3 and 4.

Critical gpeeds of positive orders avre
always asmociat id with forward precession, in
which the whirling phenomenon takes place in
the seme direction as the shaft rotation. In

M {CAC.- WOUND
GRAPHITE - EPOXY!

contrast, critlcal speeds of negative orders
are always associated with retrograde preces-
sion, in which the whirling phenomenon travels
in a direction opposite to the direction of
shaft rotation,

There does vot appear to be any unanimity
concerning which orders of critical speeds are
tho most critical onea. For example, Stodola
[4, 5], Blezeno and Grammel [7], and Hartog [13])
emphasize the firat order (n = 1). Alao ref.
[75 claims that backward-precession critical
speeda are less dangerous than forward-preces~
sion ones., However, Yamada [14] observed ex~
perimentally retrograde as well as forward
critical speeds of orders up to 8., Recently
Thomeon et al. [1] reported on experiments with
single~mass flywheel systems. They had diffi-
culty detecting the lower whirl phenomena,
although they did detect one ficst-order,
lower-mode critical speed, For the upper wode
they detected critical speeds of retrograrde
orders 1, 2, 3, and 5 cn one system and 1 and
3 on the other, as well as forward ordera 2, 3,
4, and 5 on both systems.

It is noted that in Fig. 3 there are shown
fourteen first~ and second-order critical
speeds in the rotational speed range up to
50,000 rpm: six forward and eight retrograde.
According to the reasoning of [7] and [13], the
most important critical speeds would be the
firat-order forward ones at about 650 rpm and
34,000 zpm. In contrast, the experience of {1]
and [11] suggest that higher mode forward crit-
lcal speeds of second order are most dangerous.
1t 1s noted that the amplitude ratics ¢r/¢h
and r./ry increase rapidly as the running
speed approaches the third-mode, second-order
forward critical speed (approximately 23,000
rpm). This is consistent with comparison be-
tween the present results and the experimental
results in [3] as discusséd in the next section,
which suggests that perhaps the second forward
critical speed at the third mode is the most
important one for System A.

The curious triple-curvature behavior (two
inflection points) of the second-mode forward
branch in the proximity of the third-mode for-
ward branch (1. e. in the vicinity of w =
45,000 cpm, © = 23,000 rpm) is reminiscent of
the curve-veering phenomenon discussed by
Leissa {15] and was also found by McKinnmon [11],
who reported that an experimental wheel failed
in the vieinity of these conditioums.

The major differences in System B as com-
pared to System A are smaller out-of-plane band
compliance and larger hub mass and axial moment
of inertia (my, Ipah). Again there are four-
teen first~ and gecond - order critical speeds
up to 50,000 rpm: eix forward and eight retro-
grade as shown in Fig. 4. The first order for-
ward critical speeds are at 700 rpm and 36,000
rpm, whila the most important one of the second-
order forward critical speeds is approximately
23,500 rpm.
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1t should alse be mentioned that a 4 DOF
analysis presented in [17] predicted correspon-
ding second=order critical speeds much higher
than the present analyeis. The considerable
decrease exhibited in the presant 6 DOF analy-
sis 18 ballieved to be due to the close proxim-
ity of the band tilting and turbine-shaft
translation modes (i.e. the 3rd. and 4th. modes
in Fige, 3 and 4). Thus, 1t must be concluded
that an analysis with at least 6 DOF is requir-
ed to accurately portrvay the system behavior.

Some parametric studies were carried out
for Systewm A in which either the hub assembly
or the bande, or both were redaesigned. Values
of the third 2nd.-order critical apeed for dif-
ferent designs are presented in Table 2. It 1a
intereating to see that thie particular crici-
cal speed can be incresaed more aignificantly
by increasing the band thickness (with fixed
cross-sectional area) than by changing the
material.
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Fig. 3 System A whirl frequency vs.

" rotational speed for all six modes with

gyroscopic effects, Circles denote potential forward critical
speeds and squares denote potential retrograde critical speeds.
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COMPARISON WITH EXPERIMENTAL RESULTS

In the epin tests of the two Sandia fly-
vheel aystems (denoted here as Systems A and B)
tasted by Sandia pereonnel at the Sandia Liver-
more Laboratory [3], x and y coordinates of
the hub position in the horizontal plane were
picked up by proximity gages and diaplayed on
an oacillosacope,

The System A flywheel displayed consider-
able vibrational amplitude in the low-speed
range. (The uxcessive amplitude may have been

indicative of the predicted critical wpeeds in
the vicinity of 650 and 2,000 rpm.) Etarting
at about 14,000 rpm, there was a gradually in-
cteasing buildup in amplitude which a:celerated
rapidly setarting at 18,000 rpm. Eapecially
sudden increases in amplitude were noted at
20,200 rpm and 20,900 rpm. These sudden jumps
while the rotational aspeed was gradually in-
creased may be indicative of the nonlinear

jump phenomenon amsociated with a "softening"
restoring force [16). It is also possible that
these sudden increases were due to any one of
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Fig. 4 System B whirl frequency ve, rotational speed for all six modes with
gyroacopic effects. Circles denote potential forward critical
speeds and squares denote potential retrograde critical speeds.

40

Dl o AL

m




T R

T T AP TS

TABLE 2
Comparison of the Third-Mode Second-Order Criticul Speeds for Various Designe

of System A

from 6 to 2 but with triple
rin

6. Combination of cases 3 and §

1. Basic design given in Table 1

2, Change band material to
graphite/epoxy*t

LA Change hub nssambly**

4., Combination of cases 2 and 3

5. Change number of sets of banda

thickness perpendicular to the

Case _ Specific Deaign _ I.Cr;tigll,Sgeed (IEEZ

e

23,000 frequency map shown
in Fig, 3

24,000
24,000
24,500

total cross-gectional
24,500 area unchanged
24,600

¥ New hub parameters are
Tod
- Tnﬂh

Young's modulus in fiber direction = 18.0 mej (124.2 GPa)

Specific weight = 0,054 pci (0.015 N/cm3)

w - 0.0183 lbnseczlin (0.032 N~iec2/cm)
e 0.2012 lb-in--sec2 (2.273 Necmﬂseez)
= 0.0432 1b~tn-sec® (0.488 N-cm-sec’)

these causes: (1) sudden failure of a band, (2)
slippage of the bande in the vicinity of the
hub, or (3) rapid opening of delamination in
the rim., The flywheel shaft broke due to ex-
cessive amplitude when a speed of approximately
22,100 rpm was reached.

By ultrasonic and radiographic means it
had been found prior to the spin test that this
particular flywheel rim appeared to have some
localized areas of fiber buckling. An earlier
test of another flywheel of the System A design
has achieved 17,900 rpm before the lead balance
welghts were thrown off and the test stopped.
Surface flaws, but no significant internal
flaws, were detected in it prior to teat, and
post-~failure examination showed that it had
separated in the vicinity of the surface irreg-
ularity.

In summary, it appears that the calculsted
third-mode, second-order forward critical apeed
of 23,000 rpw for System A 18 in good agreement
with the observed failure due to excesaive amp-
litude at 22,100 rpm. This agreement was sur-
prising, since all of the stiffness values used
were calculated ones, some of which were based
on boundary-condition assumptions which may not
have been sufficiently realistic.

The System B flywheel exhibited a gen-
erally smoother ride (less vibrational awpli-
tude) than did System A. A possible explana-
tion for this could be the inherently wore
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symmetric stiffness distribution of the band
geometry in System B. Pronounced sudden de-
creases in amplitude, indicative of nonlinear
junmp phenomena aemociated with a, "hardening"
restoring fozce [16],Here observed at approxi-
wately 22,000 rpm and 24,800 rpm. There was a
gradual increase in amplitude starting at about
27,500 rpm, with sudden increases in amplitude
at approximately 29,000 rpm and 30,000 rpm.
There was a loud report associated with the
first of thewe, and final failure was at 30,100
rpu. Post-failure examination of this flywheel
indicated that the rim etill retained its
structural integrity, but many of the bands had
falled near their attachuwent to the rim. It is
not known which of the following phenomena
directly caused failure of these bands: (1)
snapping of some of the bands due to excessive
steady centrifugal and aerodynamic loads, (2)
excessive dynamic mechanical loads resulting
from the system dynamics causing the bands to
snap, or (3) excessive abrasion due to ruhbing
after the flywheel dropped into the spin pit
following failure of the reduced-section break-
avay shaft. An earlier test of the System B
design had displayed dynamic instabllity at
29,000 rpm and the test was discontinued at that
point.

In summary, it appears that the calculated
third-mode, second-order forward eritical speed
of 23,500 rpm for System B was not assoclated
with the excessive amplitudes, during spin
tests, in the vicinity of 29,000-30,000 rpm.




However, there is a calculated first-order for-
ward critical epeed for the second mode (amsoc-
iated with flywheel-shaft rotatory flexibility)
at approximately 34,000 rpm. It may be tenta-
tively conjecturad that the System A flywheel
failed at a second~order critical speed

( 23,000 rpm) due to stiffness asymmetry of the
bands, while System B could have gotten beyond
this speed only to encounter excessive ampli-
tude at the next higher first-order critical
speed ( 30,000 rpmt).

CONCLUSIONS

Based on the present study, it is con-
cluded that perhaps the most important critical
speed for flywheel System A is the second-order
forward one at the third mode. Due to the
nature of the coupling involved, an analysis
with at least 6 DOF is required to accurately
predict this system behavior rather than a &
DOF analysis. Increasing the band thickness in
the flywheel shaft direction is a practical way
to increase the above wentloned critical speed.

.

For System B, the most iwmportant critical
speed 1s less certain. However, there is a
distinct possibilicy that it could be a first=
order forward one at the second wode. Two
practical ways to increase this critical speed
are to increase the flywheel shaft stiffness
and to decrease the hub's diametral mass moment
of inertia.
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APPENDIX A. ELEMENTS OF COMPLIANCE MATRICES

Detailed derivation for the stiffnesses of
the flywheel shaft and the turbine shaft are
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given in [17). Using such sciffnesses, one
can derive the compliances appropriate to the
present design configuration as follows:

%2 " Ka;l - K:;l * Lnkt;l

R e

M6 " T Kt;I + Lsxc;l

%25 % T KtZI

o L R e
VR (A-1)
955 ° Kt;1

266 Kczl

Here the first subscripts e and t refer to

the respective flywheel ghaft and turbine
shaft; the second subseripts f and ¢ are
referring to the respective flexural trane-
lational and flexural rotatory stiffnessess;
while ¢ refers to the coupling stiffness to
resist translational motion due to a bending
couple «pplied on the shaft. The following
numerical values are used in both Systems A and
B:

K

of 564.3 N/em  (322.2 1b/in) 3

Ksr 134,705 N-cm/rad (11,923 1b-in/rad) '

=~
| 1

ac 10,346 N/rad (2,326 1b/rad) ;

~
[}

ce = 9-751 % 10° W/em (5,568 x 10° 1b/2n)

=
f

fp ™ 10580 x 107 N-cm/rad (1401 x 10%1b-1n/rad) ;

1.629 x 10% N/rad (9.301 % 10° 1b/rad);

~
L}

te

L = Jength of flywheel ghaft « 27,94 e¢m (11 1in)

APPELUDIX B. EXPRESSIONS FOR COMPUTING BAND

STIFFNESSES

Determination of band stiifnesses K, P
and K for System A are derived in [17& and
are sumbhrized here for completeness,

The in=plane stiffness of the system of
bandg ie

K. - 12 AbEb/L + 12 K,

hip (8-1)

The first term on the RHS (right=hand side)
{0 tha Integrated stiffness caused by the axial
membrane stretching in each band; while the
gsecond term is due to resistance to in-plane

motion cauded by lateval force applied on each i
band. Stiffness Ky 18 given as Eq. (A-21) in H
[17) and is reproduced here as follows:

K, = (kP sinh KL)[2(1 - cosh kL) + k. sinh k)t
(8-2)

where k z (P/Ebll)H 1 P 1s the sum of ini-
tial winding tension and centrifugal tension in
each band (see [17] for details)®; A, 1s the
cross-sectional area in each band; E, 18 the
band Young's modulus in the fiber direction; L
ia the band unsupported span length ; I is
the area moment of inertia relative to an axis
parallel to the flywheel shaft.

The out-of-plane stiffness of the system
of bands Is .

Kyop = 12 AbEbbz/L + Lz(zbrzp)”(ni/u - 1) (B-3)

where b 1s one half of the hub axlal length;
Ry 1is the inside radius of the rim.

Again the first term on the RHS 18 anscc-
iated with the axial membrane stretching in the
bands. The second term is assoclated with bend-
ing of the bands about their own centroids out
of the plane which is perpendicular to the axis
of revolution ol the hub.

For System B, the bands are wound flat on
to the rim but undergu a 90-degrre Lwlst to be
wound on to axially oriented pins at the hub,
Bauds in such systeiis are vhown in Fig. S5(a).
Application of Eq. (B-1) is not valid unless a
modification is carried out. Physically the
first term on RHS of Eq. (B-l), which is assoc-
lated with gtretching in axial direction, 1s
unaffected. However, the second term ghould *~
decreased due to reduction of moment of inertia
along x .

If the force applied at the right-hand side
is Q aa showa in Fig. 5(u), the moment distri-
bution is
Miu) =

- QL - x) (B-4)

Using the same approach as taac as pre-
sented in [18], the translational deflection at
the point where Q is applied can be expressed
as follows by neglecting the shear Clexdibility:

L IM
a)/EL d. B~5
Yo jo Lot 5 /e (o Jax (B~5)
where I(x) 1s the moment of inertia at posi-
tion x .
P = initial winding tension (Py) 4+ centri~

fugal tension (Pg);

2
- PR )
P, = 4,007 x (557%65 .
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Fig. 5 Schematic diagrams showing that the
bands of System B have been twisted
by an angle of /2 at the end at-
tached to the hub.

Assuming that the angle twiated ia
linearly dependent on x , the following re-
lation can be obtained

Ix) = 1, cos® ¥ + 1, ein’x (B-6)

where I, % ea¥/12 I,: at3/12

X= nx/2L 3 t 1s band thickness; a 1is
band width.

Ingerting Egqs, (B-4) and (B-6) into Eq.
(B-5), one obtalns

(yP/Q)twisted

L 2 2= 2-
- [ (L - X /Eb(Il cos’x + 1, sin ¥) Jdx
0

(8~7)

For the case when the bands are not pre-
twisted, the value of y_/Q can be obtaiud by
using the following equagion.

(vp/Q)

L
2
nontwisted - JO (- = /Ehll]dx (8-8)

The ratio of the translational stiffness
for the above two different configurations can
be obtained as follows:

(Kb)twisced/(Kh)nontwiutad

= (%/9 /(yp/Q) (8-9)

nontwisted twisted

Using the values pertinent to the present geo-
metry and integrating numerically, one obtains
the following result:

(X = 0.678 (K,)

b)twiated nontwisted

This implies a destiffening effect due to 90°
pretwisting. Combining the present result wich
that given as Eq. (B-1), one can compute Kbip '
by using the following equations

Kygp = 12(AB /L +0.678 K ) (8-10)

As far as the Kpop 18 concerned, Fig.
5(b) should be used. If a moment My , instead
of a force Q , is applied at one end, the
moment distribution would be

M(x) = Mo {B~11)

The slope at the point of application of
My, can be deduced from the following equation.

(¢/Ho)twisted
= g [1/e, 1 cou2 £+ 1 sin2 %) Jdx
0 b2 £t h
(B=12)

where % = w(L - x)/2L

For the case where the bands are not pre-
twisted, the value of ¢/MO is

L
nontwisted JO (L/E 1,)dx (B-13)

4m)
Combining Eqs. (B-12) and (B-13), one
obtains

($/M) /(p/M )

tvisted o’ nontwisted 5.0

This represents a stiffening effect through
pretwisting, Thus, the second term on RHS of
Eq. (B-3) should be multiplied by 5 in order to
incorporate the stiffening effect. However, the
first term is unaffected since it accounts for
the membrane stretching effect along the axis of
the bands. Bearing this in wind, one has
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a7

Kyop = 12 AbEbbz/L + 60(Eb12P)H(Ri/L -1

In the
are used
a =
b =
E =
b
L =
R1 -
t -
APPENDIX C.
a
b
Fh, Fr' Ft
I(x)

L I,
Inmh' Imax'
Loac
Imdh’ Imdr'
ndt

“p

(B-14)

present paper, the following data

0.05 1n2¢0.323 cm?)

0.5 in (1,27 cm)

1.5 in (3.81 cm)

11 x 10® psi (75.87 GPa)
5.375 in (13.65 cm)
7.625 in (19.37 cm)

0.1 in (0.254 cm)

NOMENCLATURE

croas~sectinnal area of one band
width of band in plane of rotation
one half of the hub axial length

elastic wodulus of bhand along its
length

centrifugal forces of hub, rim,
and turbine, respectively

distribution of rectangular area
moment of inertia of band along
the length of a twisted band

major and minor rectangular area
moments of inertiu of band

wass polar moments of inercia
about the axis of revolution for
the hub. rim and turbine,
reapectively

rass polar moments of inertia
about a dlametral axis for the hub,
rim and turbine, respectively

translational flexural stiffness
of one band in a plane perpendic-
ular to the plane of rotation

in-plane translaticnal stiffness
of the entire system of bands

out-of~plane rotatory stiffness of
entire system of bands

]

inverse of [«

ij

Q

Q,}

{q,)

b o
The Ter Tt

flywheel-shaft stiffnesses: trans-
lational-rotatory coupling, trana-
lational, and rotatory, vespective-
ly

turbine-shaft stiffnesses: trans-
lational-rotatory coupling,

translational, and rotatory,
respectively

tie-bar parameter (sl’llzhll)‘i

unsupported length of band (from hub
to rim)

length of flywheel shaft

bending woment at position x on
the band

inertial mowments of hub, rim, and
turbine, respectively

inertia watrix with elements de=-
fined in Eqs. (6)

bending moment applied at end of
band

mess of hub, rim, and turbine,
respectively

gyroscopic~action matrix with ele-
ments defined in Eqs. (6)

the ovder of a critical spzed
G w/)

total tension in one band
[ Pc + Pi)

centrifugal tension in one band
initial winding tension in one band

pseudo-velocity column vector
] w(qi)

applied shear force on band, acting
normal to the band and in the plane
of rotation

generalized force column vector
(F,, M., Fo M, F, BT
generalized displacement column
vec;or H (rr. Bev Ty s Teo
4,

inside radius of rim where the bands
are attached to it

translation in plane of rotation for
the hub, rim, and turbine

Lot e o

Sl

m

T

R

s




t thickness of band in direction of
axis of votation of flywheel

x poeition along the band, measured
from the hub
l 7 X, % wx/2Ls "L = X)/2L
; y daflaction of band at rim relative '
) P to the hub, in a direction normal
to the band and in the plane of
rotation
[“111 compliance matrix with elements

defined by Eqe. (A-1)

.n' L 0: tilt angles (slopes) of the hub,
tim, and turbine, respuctively.

9] rotational speed

w whirling frequency
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HUMAN RESPONSE TO VIBRATION AMD SHOCK

WHOLE~-BODY VIBRATION OF HEAVY EQUIPMENT OPERATORS

D.E., Wasscrman, W.C.
Natjional Institute for Occupational Safety and Health

Cincinnati,

Asburry, T.E. Doyle

Ohio

Approximataely 6.8 millioa United States workers are exposed

to whole~body vibration.

A vibration field study was made
of one of these groups =-- heavy equipment operators.

Several

types of machines (track-type tractors, scrapers, motor
compactors, skidders, and Aump
trucks) were operated by one or two of four operators with

graders, loadaers, backhoes,

Alffexring degrees of experience.
tained from the following locations,

Vibration data were ob-
vehicle floor, man-

seat Interface, as well as from the operator's knee, shoulder,

and head,

Results of analyzing the vibration spectrum indi-

cate that for the different types of machines little dif-
ference could be attributed to the experlence or body mass
of the operator and that most of the higher level vibration
occurred below the 4 toc 8 Hz
much of it at less than 1 Hz.

INTRODUCTION

From data compiled in plant site andq
workplace studies performed by the
National Institute for Occupational
Safety and Health (NIOSH) we can esti-
mate that there are some eight million
workers in the United states who are
exposed to occupational vibration.(l)
0f these, some 6.8 million are esti-
mated to be exposed to so-called "whole~
body" vibration (i.e., vibration im-~
pinging on the entire body, head-to-toe)
such as would be experienced while
driving a moving vehicle, for example.
Another 1.2 million workers are exposed
to "hand-arm"” (i.e., segmental) vibra-
tion, which is locally applied vibration
such as would be experienced while oper-
ating vibratory hand tools (e.g., pueu~
matic chipping hammers, grinders, chain
saws, etc,).

Whole-body vibration is considered
a "generalized stressor."(2) Since it
impinges on multiple body organs simul-
taneously, both the acute and chronice
physiological effects of such exposure
are dAifficult to define. With regard
to the work situation, information about
chronic effects are paramount slnce a
worker working in the same vibratory
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"human-body resonance bhand,"

job for 30 years, 50 weeks per year,

at a conservative 30 hours per week,
would be exposed 45,000 hours. To
answer some of the questions relating
to chronic vibration exposure in the
workplace, NIOSH has completed a series
of epidemiological morbidity studies of
key vibration-exposed occupations:
heavy equipment operation (3, 4), bus
driving (5), and truck driving (6). In
addition, a series of laboratory animal
studies (7, 8) and human studies (9)
were performed.

Heavy equipment operation was the
subject for this first series of field
studies because this large group of
workers (about 500,000) is chronically
exposed to occupational vibration and
has been epidemiologically studies and
because the Union of Operating Engineers
Local # 3 (San Francisco based), which:
assisted in the previcus epidemiological
studies, offered us the use of their
unique training facility (Rancho~
Murietta, near Sacramento, California).

As part of this series, we under-
took engineering field studies to quan-
tify and describe the vibration exposure
received by workers while they operated
various tyres of heavy equipment vehi-
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cles under actual work conditionu,
Future blological laboratory and medical
fiald studies combined with vibration
dose data, such as that reported here,
will eventually give the final answers
to the health and safuty cougequences

of this exposure. 1In this paper the
instrumentation, the study methods, and
the duata collection and procesaing of
the engineering field study are de-
saribed. an example of the vibkbration
data is also presented.* Only the
regults of the analysls of the vibration
data is presanted in this report)
physiological, nolse, and other date
obtained in this study will be reported
elsaewhere.

INSTRUMENTATION

The vibration exposure experienced
by the worker must be measured at vari-
ous poin’i: on the vibratoxry source, as
well as on the manh, becausa the dose a
worker receives depends on such multi-
ple factors as:

o worker orientation and the degree of
body coupling to the vibrato.y socurce;

o frequency filtering by vehicular
seats, worker clothing, vehicle
suspension, vehlicle tlre pressure;

o multiple vibratory sources, e.g.,
dual engines on some types of eakth-
moving scrapers;

o wvehicle speed and the type of road
terrain being traveled;

© the worker's age, body mass, and
expocuroe time on the job.

Multiple simultaneous maasures nheed
to be taken to characterize the vibration
dose. Because vibratlion is often accom-
panied by noise, heat, fumes, and dust,
it 18 necessary to attempt to account
for these additional stressors.

SOURCE OF DATA - The Target Vehicle

The system developed and used in
Lthese field studies is depicted in
Figures la-lc. Each heavy equipment
vehicle operator was "wired," using
various transducers, to a multi-channel

* The complete details of this study
have been reported in "Whole-Body Vibra-
tion Exposure of Workers During Heavy
Equipment Operation,"™ D.E. Wasserman,
T.E. Doyle, and W.C. Asburry, DHEW
(NIOSH) Publication No. 78-153, April,
1978,

48

multiplexed FM/FM (4 watt) telemetry
transmitter opevating at 216.,5 MHz,

Data were tranasmitted to a nearby moblile
unit where it was demodulated and FM
tape recorded for later data analysis.
Vibration acceleration measures were
taken in acoordance with the accepted
blodynamic coordinate system designated
in 180 2631 (Figure 2). Data were col-
lected frow the following locations:

o Vibration acceleration at:

= Target vehicle floor f{ve-’ical
axis)g

- Man-~seat interface (i.e., worker's
buttocks) (vertical, horizontal,
and lateral axis) (Figures 3, 4),

= Worker's knee (vertical axic);

- HWorker's head (vertical axice)
(Figures 5 and 6).

o Environment:

- "A" weighted noise (at the worker's
ear level) using a sound level
mecer;

- Temperature and relative humidity
(manually obtained).

© Physiolaogy:

~ Electrocardiogram (EKA) using

digposable silver-silver chloride
electrodes;

- Electromyograms (EMG, 2 channels,
bilateral sacrospinalis muscles)
using the above type electrodes.

o Other:

- Road profiles traversed by the
target vehicle (using a monochrome
vidicon TV camera and video tape
recorder mounted at the operator's
eye level observing and recordiny
the road terrain the operator
actually observed) and continucnsr
observat. ns of the operator and
his vehicle motion (using a second
monochroeme vidicon TV camera and
video tape recorder);

- Target=-vehicle speed (Doppler
radar);

- Targe-vehlcle tire pressure {where
applicable);

~ Two-way radio communication between

target~-vehlicle operator and mobile
unit,

1l

101 1
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Figure la.
Heuvy equipment vohicle
operator "wired" for
transmitting measured
data.

Figure 1b,
Vibration mobile unit AR
- obtaining vibration, VML
. environmental, and \
3 physiological data. —~

Figure lc.

Vibration mobile unit
and target vehicle (%)
at test site.




kI o

Figure i. Biodynamic coordinate

. system acceleration

E meagurements (150 2631),
a ay’ nz = acceleration
in the direction of the
x, ¥, and z axes;

x axis = back-to-cheat;

y axis = right-to-left;

z axis = foot~to-head.
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TRIAXIAL
ACCELEROMETER

Fig. 4 - Seat accelerometer disk
is use during fleld study

i

i
I2MM

A LL!L L

Fig. 5 = Triaxial accelerometex embedded in molded rubber

]

disk., The disk is taped

to the surface of tha driver's seat cushion to receive man/seat acceleration data,

Fig., 6 ~ Bite bar in use during
field study
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™he hacrt of the data acquisition
system was a ruggedized FM/FM telemetxy
system. The basic transmitter capacity
was up to 14 multiplexed channels, This
permitted a varlety of data inputs and
the system was designed so as to allow
us to custom desigh a variety of condi-
tioning electronics modules and to inter-
face these into the multiplexer. In
these field tests we chose to transmit
12 data channels (with the remalning
two channels at the receiving end tape
recoxrder used for data reduction pur-
poses - a time marker channel and refex-~
ence oscillator)., Thus, the transmitter
data were:

o seven vibration data channels,

o one "A" weighted noise channel,

o two electroyogram (EMG) channels,

o one electrocardiogram (EXG) channel.

The transmitter was designed so that
it oould be used in a radio frequency
(RF) mode or in a direct (hard-wired)
mode with the RF section off, Aall
inputs were individually conditioned
and multiplexed; this multiplexed asignal
could be transmitted either dirxectly
(through a 1000 foot cable driver ampli=~
fier to the mobile unit) or through the
RF mode, with a transmitting distance
of 2 to 4 mliles, depending on the ter-
rain. A simplified schematic diagram
of the transmitter is depicted in
Figure 3.

Becaus: of the limited number of
data channels, we were unable to use
thrae accelerometerxs at vach vibration
posltion. (Three acceler meters would
have been needed to reasonably define
the multiple directions of vibration
impinging on an objest at a given point.)
Three orthogonal directions were meas-
ured on.y at the man-seat interface
(Figures 4 and 5)) thus, at the floor,
knee, and bite bar (Figures 6 and 7)

nly vertical acceleration was measured,

Equipment powexr was obtained using
a single 12 volt auxillary automotive
battery.

A list of the major commercial
equipment used in this study is given
in Table I.

VIBRATION DATA RECEIVER -~
Vibration Mobile Unit

A versatile, rugged, cn-off road
mobl'~2 unit that could be used virtually
anywnere under any road condition was
needed as a mobile contrel and data
acquisition center. To meet these needs

a four-wheel-drive military ambulance
was customized (Figures 8 and 9) which
inoluded a 5000-watt alcernator for the
instrumentation power,

All of the data from the target vehi-
ole were simultaneously multiplexed and
transmitted to this receiving mobile !
unit where it was received, demodulated,
and, finally, FM tape recoxded with some
preliminary data processing (i.e.,
Fourler Spectrum Analysis) being produced
on-iine. The target vahicle was contin-
uously under vides monitoring from the
portable black and white TV camera
located on top of the mobile unit. This
video information was taped and synchro-
nlized with all the incoming Qata, The
spead of the target vehicle was contin-
uwously monitored and recorded using a
police-type Dupplexr radar unit, 1In
addition, an independent R} audlio commu~
nication link maintained two-way communi=~
cation between the two vehicles.

Dl

e e i

The mobile unit normally carried a
three-man crew: one to operate the
major electronics system, one to oper-
ate the roof video camera chain, and
the third to double as driver and opex-
ator of the Doppler speed-measuring
unit,

4#TUDY METHODS AND DATA COLLECTION

Four professional heavy equipment 4
operators were used in the tests of the
differvent pieces of heavy equipment of
various U.S. manufacturers (Table II).
In many cases, it was possible to obtain
data from two drivers as they sequen-
tially oparated a given machine, each
repeating the same type of work cycle
over the same terrain under the same
environmental conditions. Where two
drivers were used sequentially, one
driver was the "seasoned profussional"
(the driver who actually taught the
proper use of that machine). Because
the other instructor did not use that
particular machine but could operate it
he was considered the "new driver,"
This was done because about one-third
of the heavy equipment workforce con-
tains relatively hew operators. All
had at leact 20 yearg of experience
operating various heavy equipment vehi-
cles.

Routei1 and work cycle schedules were
mapped our for each machine. When
multiple machines of the same type were
used each machine was operated ovexr the
same terrain and under the same work
conditions. Each day an operator was
wired into a heavy equipment vehicle,
system calibration and checks performed,
tape recorded, and logged. Operators
were lnstructed to perform their normal
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Fig., 7 = Metal bite bar (left), with accel-
erometer and dental impression (right)

TABLE I

Major Commercial Equipment Used in Study*

(Transmitting) Target Velilcle Equipment

Aydin-Vector by power FM/FM transmitter (216.5 mHz, Xtal controlled)

Sony, Model AVC-3400, portable monochrome Vidicon camera and video tape
recorder systew

Bectin~Dickinson, "Dispos E1" silver-silver chloride electrodes

ENTRAN, Model EGAL-125, pilezo resistive accelerometers

Pace, Model 100 ASA, voice comunications transmitter/receilver (21.575 MHz)

(Receiving) NIOSH Mobile Unit Equipment

Microdyne, Model CPR-101, phase-locked loop receiver

Metraplex, Mcdel 122-2, Subcarrier FM demodulators

Honeywell, Model 5600-B, multichannel FM tape recorder

Sony, Model AVC-3400, portable monochrome Vidicon camera and video tupe
recorder system

Honeyweil-Saicor, Model SALS51A, Fourier analyzer

Custor Signals, Model MR-7, wmoving Doppler speed radar system (10,525 GHz)
Generac, Model XP-5014G, 6207-5, 5000-watt alternator

* Mention of commercially available equipment does not necessarily imply
U,S. Government endoreement,
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work tasks In the same manner they would
if testing were not taking place. bata
collection began and the same work cycle
using the same machine was repeated
using another operater later in the same
day.

Where possible, types of machines
ware later categorized into their appro-
priate SAE clasaification system also
shown in Table II.

DATA PRESENTATION AND ANALYSIS

During the course of this study, we
gathered spectral data from accelero=-
meters placed in seven different posi~-
tions. We classified these data into
various matching categories and obtained
a maximum of saven spectral plots for
each data group.

As an example, Figure 10 illustrates
seven plots for one of the machines and
ocne of the operators (bata Group C).
The computer coda number in the upper
left hand corner of each spectral plot
indicates the machine type (Soclety of
Automotive Engineers (SAE) classifica-
tion and document number), the position
of the accelerometer (e.g., the seat,
knee, etc.), the number of computer
avarages used in each plot, and the
driver code number. To read a given
spectral plot for each peak Iln the
spectra, xead "frequency" horizontally
(25 Hz full scale) and read peak linear
accaleration in "g" units vertically
(for RMS, multiply each peak value by
0.707), using the appropriate vertical
scale factor ag indicated in each plot.

In Table IIX, the predominate fre-~
quencies for the six Hz bands for Data
Group C are discussged. In Table IV,
the maximum and minimum peaks within the
slx freguency bands for Data Group C
are tabularized. 1In Table v are found
the major spectral peaks by machines and
type of opaeratoxr for all of the machines
used in the field tesgts,

Bacause the heavy equipment machines
have been categorized into an approved
SAE classification system the vibration
data processing has centered around this
classification schame. The first
attempt at data reduction resulted in
some 2,400 data plotg. In the second
attempt only linear vibration spectra,
grouped according to the SAE classgifi-
cation where possible, was used. This
resulted in the linear spectral plots,
an example of which is contained in
Figure .0 for Data Group C.

The following steps were taken to
derive these linear spectra plots using
an HP Model 5451 Fourier computer, To

compute a power spectra of A random pro-
cess it was first necessary to generate
a positive quantity that could be aver-
aged. The resulting average was a meas-
ure of the energy in each frequency com-
prising the spactrum band, The vibra=-
tion data can be regarded as a typical
random process ylelding a Fourier trans-
form that will have both poasitive and
negative, real and imaginary values,
randomly distributed across the spectrum.
If thia transform were averaged without
time synchronization, the result would
be zero. Thus, the Fourier transform
was first conjugate multiplied to yileld
a positive gquantity at each fregquency.

A number of such spectra were summed and
then each frequency was divided by that
number to achieve the desired average.
To obtain lineax spectra from power
spectra, the square root of the power
spactra was taken. In the computing
process the result ylelds a real part
containing magnitude data with the
imaginary part containing phase informa-
tion. The maghlitudes are then summed as
repeated averages are tdken and stored
in the computer. The phase values ran-
domly sum and, thus, must be disregarded,.

The computex processing methods arae
summarized in Table V.

SUMMARY

The summary and conclusicons given
herein cover all the machines and oper=
ators indicated in Table VI. Without
being overly specific, it appears we
can indicate the following for the major
vibration peaks;

1. For track type machines (tractoxs
and crawler loaders) with virtually no
suspension and limited speed, the major
frequency peaks extend discontinuously
from about 0.12 Hz to about 20 Hz, with
peak acceleration levels at approxi-~
mately 0.0lg to 0.25g. About 25 per-
cent of the major frequency peaks occur
in the 4-8 Hz human body resonance band,
whereas about 50 percent of the major
peaks occur at frequencles less than
0.15 H2. The majority of these latter
peaks appear in the vertical a, direc¢-
tion.

2, For rubber tire type machines
(scrapers, motor graders, and loaders)
that have suspension systems and moder-
ate speed capability, the major fre-
quency peaks extend discontinuously
from about 0.10 Hz to about 5.25 Hz,

* A complete list of all spectral plots
is given in the praviously cited NIOSH
publication 78~153.
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SELF-PROPELLED RUBBER TIRE SCRAPERS
(KICHIGAN 110; CAT 6279, €310, 631€;
TEREX 15-14)

OPERATOR NO. ), EXPERIENCED
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Fig. 10 - Data Group ¢
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TABLE XIX
Example of Discussion of pata (Date Grqup C)

Data Group “C" (Computer File Code 24)
TYPE OF MACHINE: Self-proupelled rubber tire scrapers (Michigan 110, CAT
627B and 631 B, C, Terex TS-~14); both traditional and

: ] newer vibration reducing design.*

i OPERATORS: Ohe experienced and one inexperienced; each operating

f machines on separate days, doing the same job over same
) terrain.

WORK SEQUENCE: 1. Roading empty on blacktop (10-20 mph); 2. Filling
bowl with dirt and rock (30-40 seconds fill time);
3, Roading loaded on semi-smoothhaul road (20 mph): :
4., Gradually dumping load while moving (5 mph); 5. Road- E
ing unloaded on same haul road (30 mph); 6. Push-pull ) %
loading of another scraper; 7, Roading unloaded on access
road (30 mph).

SPECTRAL PLOTS:  14; 7 for each operator,

[E———

HIGHEST AND LOWEST VIBRATION FREQUENCY PEAKS:
Experienced operator (summarized in Table C=1)

In the 0-3.99 Hz band, 2.12 Hz appears as a maximum peak at every vertical
N transducer position. It also appears in the lateral seat direction at about
Lo half the amplitude of the principle peak of 0.13 Re. The principle peak of
the seat in the horizontal direction is 0.31 Hz.

i

In the 4-7.9% Hz human-body resonance band, components of 4 Hz appear maxi-
mally at all transducers.

In the 8-11.99 Hz band, 8 Hz components appear vertically at each transducer;
10-11 Hz components appear at the seat in the lateral and horizontal
poaitions.

i AN e 2ol

In the 12-15.99 Hz band, major components of 12~13 Hz appear at the floor,
head, knee, and the seat laterally. Minor components of the 12-13 Hz band
appeat at the geat vertically with the highest peak occurring at 14.87 Hz;
o similarly, the seat horizontally has a 14.87 major component. Shouldar data
‘ do not appear.

T T S

In the 16-19.99 Hz band, major components of 16-18 Hz appear at each trans-
ducer except at the head and shoulder.

. In the 20-23.99 Hz band, only the floor and lateral seat direction appear
. to have spectra.

In_gummary, the overall major peak appears at 2.12 Hz at the shoulder. Tt
| also appears that the seats (in the vartical) direction tend to remove
frequencies above 16 Hz.

*The data are a combination of data for scrapers of traditiomal and newer
design. The primary spectral difference is that the vibration reducing

. designs exhibit vertical vibration levels of about one-half that of the
o traditional designs in the frequency range of 1.5 to 2,5 Hz,

P R TR
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TABLE V
Summary of Data Anslyais

Method Fast Fourier Transform (FFT)
Analyzer Hewlett=Packard 5451 Digital
Fourier Analyzer

Parameters:

Anslysis range 0,25 Hz

Block size 1024

Sample time 1,62 minutes

Af = constant bandwidth = .0488 He

Hauning window Used once

Hanning correction factor 2,0
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with peak acceleration levels al arp-ron-
lmately 0,04¢g tu 0.130q. in the 4-8 Hz
human hody rosonance band, only a single
peak at 5.25 Hz ac¢ 0,0959 in the hori-
zontal (ay) seat position occurs. About
25 percent of the major peaks occur in
the 2,12-2,6 Iz range. Tha majority

of thosu latter peaks appear in the
vertical a, direction.

3. For the vibrating drum type
machine compactors, the speotra spread
from 0.1 Hz broadly to 15,28 He, with
acceleration leveld ranging from 0.004yg
to 0.09g., In the 4-8 Hz human body
fesonance band there were no major
peaks; however, a peak at 3,62 Hz ap-
pears at 0.09g. The majority of the
spectra peaks appear 1n the vertlical
direction,

For the wheel type compactor (where
we have available only a limited amount
of data) seat data, 0.13 Hz and 14.95 Hz
appear predominant with accelerations
ranglng from 0.025g to 0.064g.

4. For the hydraulic excavator
(a trxack machine without a suspension)
there appear to be two distinct groups
of peaks: ona group at very low
frequencies (C,12-0.20 Hz at 0.026q to
0.54g) and another group at higher
frequencles (14.,6-15,3 Hz at 0.0lg to
0.0279)., Once again, the majority of
these peaks occur vertically and no
major peaks occur in the 4-8 Hz human
body resonance band.

5. The limited available seat data
for the log skidder (a very specialized
forestry type machine)} range from
1-4.15 nHz, with acceleration levels
from 0.07g to 0.130g peaks.

6. For the case of the two dump
trucks, we found a spectrum extending
from 0.12-12.12 Hz (0.0lg to 0.048g).
In the 4-8 Hz reasonance band, about 37
percent of the major peaks occur. Once
again, the majority of all peaks appear
in Lhe vertical a, direction.

CONCLUSIONS

Recognizing the constraints on the
data obtained in this study as well asg
our small operator sample size, it
would appear that certain limited and
tentative concluding comments can be
made :

1. From these limited data there
appears to be little differenc: between
experienced and inexperienced operators.

2. From these limited data, there
appears to be little difference 4in
spectra between operators of diffaering
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body masses. (This wculd appear "o
confirm an observation by Barton et al.
(10).)

3, From these limited data, there
appoars to ba a single vibration trans-
mission path to the oparator's upper
torso and head from the vehicle occur-
ring directly through the operator's
gaat and torxso., 1In the case of the
oparator's seat, the vibration impinging
on the upper torso is modifiad by the
€iltering characteristics of the seat.

4, Most of the higher acceleration
levels measured occur in frejuency bands
helow the 4-8 Hz human body resonance
bund with much of the data occurring at
less than 1 Hz.* We ballev> these vevy
luw fregquaency peak: are due to changes
in vehicle path or speed, such as accel-
erating the vehicle and braking,
stearing through turns, and changing
grades or side slopes in the terrain.
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* rrequencies below 1 Hz are reported
{11, 12) to cause motion sickness;
however, the subjects in this study
have never reported this problem
while operating the heavy equipment
machines. Recent work has shown that
human exposure from 0.1-0.7 Hz (meas-
ured at the accelexometers in the
ordexr of 0.19g) as reported here are
generally associated with motion
sickness in susceptible people when
the motion is sustained (as on a ship)
and has an on-going periodicity.(13)
This does not generally happen in
this situation because of the non-
recurring nature of the motion.
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RESEARCH RELATED TO THE EXPPANSTON AND IMPROVEMENT OF
HUMAN VIBRATION EXPOSURE CRITERIA

Richard W. Shoenberger
Aerospace Medical Research Laboratory, Aercspace Medical Division
Wright-btatterson Alr Force Base, Ohlo 45433

A program of rescarch dlrected toward improvement of the
validity and geonerality of human vibration cxposure

criteria is described. A psychophysical matchlng technique
was used to investipate the percelved intensity of various
types of vibration environments. Experiments conducted to
date are of two types: comparisons of sinusoidal and
non~sinusoidal vibrations, and comparison of translational
and angular vibrations. Resultg discriminate between alter-
nate methods far evaluating the severity of non-sinusoidal
vibratlions, and Indicate relationships between translational
and angular vibrations nceded for the expansion of vibration
criteriu to include angular motions.

Standards for human expousure to
whole-body vibration [1, 3, 8] are
intended to be appllied to real-
world situations in which the
motion environments are composed
of complex waveform vibrations con-
taining multiple frequencies or
broadband random inputs, These may
occur 1in any of three translational
and three rotational directions,
elther independently or simulta-
neously in any combination of the
six possible cdegrees-of-freedom.
However, the experimental data
base from which such standards are
derived consists primarily of
studies in which the vibration
inputs were single sinusoids
appllied in one or another of the
three translational axes. To im-
prove the validity and generality
of vibration exposure criteria,
research 1s needed comparing sinpgle-
axlis sinusoidal and various Kinds
of non-sinusoidal, angular, and
multi-degree-of-freedom vibrations.
A program of research in the
Biodynamic Effects Branch, Bio=
dynamics and Bilocngineering Divi~
sion of the Aerospace Medical
Research Laboratory, investigating
the perceived intensity of varlous
types of vibration environments,
is directed toward this goal.

This paper 18 divided into two
sections: experiments comparing
sinuscidal vibrations with various
kinds of non-sinusoidal vibra-
tions, and experiments comparing
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translational vibrations with
angular vibrations. Althcugh the
detalled experimental designs
varled slightly from one experi-
ment to another, the technlgue used
was fundamentally the same for all
experiments ~- a psychophysical
matching procedure in which the

sub jects matched thelir perceptions
of the intensity of one type of
vibration by adjusting the physical
intensity of another type of vibra-
tion. Similar techniques have
proved successful for comparing

the subjective intensities of vi-
braticns with ditferent frequenciles
[5], different translational axes
[6]), and different spectral
compositions [7].

Comparisons of Sinusoidal
and Non-Sinusoidal Vibrations

Currert human vibration exposure
standards [1, 3, 8] specify two
procedures for evaluating non-
sinusoidal vibration environments.
The preferred method treats each
somponent frequency of a2 multifre-
quency environment or each third-
octave band of a random environ-
ment independently, while the
alternative method involves a
welghting technique, These two
methods yleld different results
except when all the vibration
energy is within a single third-
octave band. Under the weighting
method, the severity rating of the
vibration increases with the number
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of third-octaves in the spectrum;
but undepr the independent componcent
method, the rating ls determined
gsolely by the criterion level of
the most intense third-octave and
is, therefore, independent of the
bandwidth, The preatest difference
occurs when the vibration spectrum
has the shape of the criterion
curvea.

In the three experiments re-~
ported below, the vibration stimu-
11 were constltuted so that they
contained either once, two, three
or four components, each at a
particular criterion level and each
in a different third-octave bhand.
Under the independent component
method the severity of the stimull
would be rated the same no matter
how many components they contained,
but under the welghting method the
severity rating would increase as
the number of components increased.
The experimental procedure was
essentially the same in each exper-
iment, but the composition of the
vibration stimull varied bLetween
experiments. In Experiment I, the
stimull were composed from sinu-
soids with frequencies from 11 to
63 Hz; 1in Experiment II they were
made up of third-occtave bands of
random vibration with center fre-
quencies from 16 to 40 Hz; and in
Experiment III they were synthesized
from sinusolds from 2.6 to 16 Hz.

METHOD
Subjects: In all three experi-

ments the subjects were male Ailr
Force military personnel, who were
physlically qualified volunteer
members of a vibration panel. They
received incentive pay for partici-
pation in vibration experiments.
Ten subjects particlipated in Exper-
iment I, 12 subjectls in Experiment
II, and 14 subjects in Experiment
IIzI.
Apparatus: In Experiment I vi-
bration was produced by an MB Elec-
tronics electromagnetic vibrator
(Model C-5), and in Experiments II
and III an Unholtz-Dickie electro-
magnetic vibrator (Model MA 250D)
was used to produce the vibration
stimuli. In all three experiments
a lightweight aluminum seat was
rigidly mounted on the moving ele-
ment of the vibrator, and trans-
mitted the vibration directly to
the subject without cushioning or
padding. The Unholtz-Dickie seat
included arm and foot rests, but
the MB seat did not. The subject

was neated upright and secured to
the dval by a lap belt and shoulder
harness, He was also provided

with a hand-held potentiometer

with which he controlled the
amplitude of the matching vibration.
The acceleratlon of the vibrating
seat was displayed on a true RMS
meter, and the acceleration of the
matching vibration was read from
this meter and recorded by the
experimenter for each matching
response. Photographs of the ex-
perlmental setup for both vibrators
and additional details concerning
the production of the vibration
stimuli are available in refer-
ence 7.

Vibration: 1In all three ex-
periments, vibration was in the

Z-axis. Vibration stimull in
Experiment I were composed of four
sinusoidel frequencies (11, 17,

10 & 63 Hz) presented either singly
or in all possible combinations of
two, three or four frequencles.
Twenty-five Hz (the matching fre-
quency ) was also presented as a
stimulus to provide a check on
possible biases or errors in the
matching response when the stimulus
and response frequencies were
ldentical. The frequencies used
were approximately the preferred
center frequencies of every other
third-octave band from 10 to 63 Hz.
However, slight departures from
some of these center frequenciles
were made to avoid harmonic re-
lationships between frequencies.
This resulted in constantly chang-
ing phase relationships between

the frequencies in all combinations,
rather than the fixed phasing which
would occur for harmonically relat-
ed frequencles. All frequenclies
were presented at accelerations
corresponding to the ISO 25-min
Fatigue-Decreased Proficlency (FDP)
level (3], Table I 1ists all of
the stimull used in Experiment I,
and speciflies their frequencies

and RMS accelerations.

In Experiment 1I the vibration
stimuli were made up of {ive
third-octave bands of random vi-
bration, with center frequencies
of 16, 20, 25, 31.5 and 40 Hz,
presented either singly or in
combinations c¢f two, three, or four
bands. The 2% Hz sinusoidal match-
ing frequenhcy was also presented
as a stimulus, as 1t was in Ex-
periment I, to check on possible
response bilases. All third-octave
bands were presented at acceler-
ation levels corresponding to the

Lo




b
1
1
%

TABLE I
Vibration Stimulil (Exp. I, 25-min FDP)

Number of Stimulus Frequency Acceleration
Components Code (Hz )} (RMS G,)
A 11 0.25
B 17 0,39
One 25 25 0.57
C 40 0,92
D 63 1.43
AB 11 + 17 0.46
4 AC 11 + 40 0,98%
- Two AD 11 + 63 1,4%
Lo BC 17 + 40 0,99
E BD 17 + 63 1,48
[o1} 40 + 63 1.70
P ABC 11 + 17 + 40 1.03
1 ‘ ABD 11 + 17 + 63 1.%0
£ Three ACD 11 + 40 + 63 1,72
3 BCD 17 + 40 + 63 1,74
g _ ;

¢ Four ABLZD 11 + 17 + 40 + 63 1.76

; ISO 1~hr FDP level [3]. It was 1-hr FDP level [3)]. Table III

necessary to use a lower acceler-
ation level than that used in
Experiment I (25-min FDP) because
the random stimull contained
occaslonal peaks which were con-
siderably higher than the peak
accelerations for the sinusoidal
and multifrequency stimuli. All
possible combinations of four
slnusolds were used to produce

the stimull in Experiment I, while
selected combinations of five
third-octave bands were used 1in
Experiment II (reasons for this
difference are discussed in
reference 7). Table II lists all
of the stimuli used in Experiment
II, and specifies their center fre-
quencies and RMS accelerations.

In the third experiment, the
two methods for evaluating non-
sinusoidal vibrations were compared
at frequencies which spanned the
Z-axis body resonance rvange. The
vibration stimuli were composed of
five sinusoidal frequencies (2.6,
4,1, 6.3, 10, and 16 Hz) presented
e¢lither singly or in combinations
of two, three, or four frequencies.
In this case, 6.3 Hz was used as
the matching frequency. All fre-
quencies were presented at acceler-
ations corresponding to the ISO
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lists all of the stimull used in
Experiment IXI and specifies

thelr frequencies and RMS acceler-
ations.,

Procedure: 1In all three ex-
periments, each subject matched
his perception of the intensity
of each of the stimulus vibrations
by aadjusting the intensity of a
sinusoidal matching frequency
(25 Hz in Experiments I and II and
6.3 Hz in Experiment III) until
he felt that its subjective in-
tensity was the same as the sub-
Jective intensity of the stimulus
vibration he had just experienced.
Each match involved a 30~second
exposure to the stimulus vibration
and a subaequent exposure to the
matching vibration which lasted
approximately 15 to 30 seconds,
depending on how gquickly the sub-
Ject achieved a match.

When each subject arrived at
the laboratory, the nature of the
experiment and the intensity-
matching procedure were explained.
The subJject was then seated in
the vibration chair and given a
short practice session to familiar-
ize him with the operation of the
equipment and the matching

ik,
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TARLE 11
Vibration Stimuli (Rxp. {1, 1-hr FiOP)
Number of Stimulus Center Acceleration
Third=Octave Code Frequency (RM5 Gz)
Bands _ (Hz) _ _
(Slnusoidal) 25 A 0,38
A 10 O.24
I 20 memme e m e wm——- 0,30)*
One H 25 0,34
(1) e A1 V) mme e am J 0.47)"
A0 0.60
AL 16 + 40 0,65
e 20 + 2% Q.48
Two BD 20 + 31.% 0.5%6
cD 25 + 31.% 0.60
ABC 16 + 20 + 26 0.54
Three ACE 16 + 25 + 40 .74
ChE 25 4+ 31.5 + 40 .85
ABCD 16 + 20 + 2% + 31.6 0.7?2
Four ABDE 16 + 20 + 31.5% + 40 0.86
BCNE 20 + 25 + 31.H + 40 0.90

*The 20 Hz and 31.% Hz bands were not uscd ags indivldual thilrd-vctave

stimull.

technique. He then matched each of
the vibration stimuli for a partic-
ular experiment. The series of
stimuli was presented tc each
subject 1n a different random order.
After a short rest b.eak of about

5 minutes, the stimulus series was
presented again and the subject
matched each stimulus a second

time.

RESULTS AND DISCUSSION

The mean matching responses ob-
tained when the stimulus frequency
was the same as the matching fre-
quency were 0.58 RMS G, for
Experiment I, 0.36 RMS G2
for Experiment 1I, and 0.13 i
RMS G_ for Experiment IIIL. These
valuc§ are nearly fdentical to the
respective stimulus accelerations
and demonstrate that the matching
procedure had no inherent response
biases.

Table IV presents the mean
acceleration of the matchling re-
sponses for stimull containing the
same number of components (i.e.,
one, two, three, or four) for each

of the three experiments. The
difference in the magnitude ranges
of the matching responses betwecn
experinents arc the result of the
different FDP levels and frequency
ranges of the stimuli and the
different frequencies of the
matching responses used in the
three experiments.

Each of the three experimentis
was designed to Investigate the
relationship between percelved
vibration intensity and the number
of criterion-level components in
the vibration stimulus. Under the
independent component method for
evaluating complex vibrations, the
acceleration of the matching re-
sponse should be independent of
the number of components in the
stimulus. On the other hand, under
the welghting method, the
acceleration of the matching re-
sponse should Increcasec with the
number of components in the
stimulus. Inspection of Table IV
indlcates tnat in all three
experiments the acccleration of the
matching response increased almost
linearly as the number of sinusoids
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TABLE 111
Vibraution Stimull!l (Exp. IIT, 1-hr rbp)
NMumber of Stimulus Frequency Avceleration
Components Coie (Hz) (KMS G )
A 2.6 0.1%
B 4.1 0.17
One c 6.3 0,12
n 10 0.1%
E 16 0,24
AE 2.6 + 16 0.28
BC 4,1 + 6.3 0.17
Two BD 4.1 4+ 10 0.19
cb 6.3 + 10 0.19
ABC 2.6 + 4,1 + 6.3 0.23
Three ACE 2.6 + 6.3 + 16 0.31
CDE 6.3 + 10 4 16 0.31
ABCD 2.6 + 4,1 + 6,3 + 10 0.27
Four ABDE 2.6 + 4,1 + 10 + 16 0.34
BCDE 4.1 + 6.3 + 10 + 16 0.33
TABLE IV
Mean Acceleration of Matching Responses (RMS G )
Mumber of Exp. I Exp. II Exp. TII
Components
Dne 0.64 0.36 0.12
Two 0.88 0,47 0.16
Three 1.11 0.59 0.19
Four 1.31 0.67 0.22

(Exps. I & III) or third-octave
bands (Exp. II) in the stimulus
increased. In each experiment
there was roughly a doubling of
response acceleration as the number
of components 1in the stimulus
inerecased from one to four. In
order to test the significance of
the changes in response as a func~-
tion of the number of components

in the stimulus, an analysis of
variance was performed for each
experiment, The results of all
three analyses showed that the
increases in the mean accelerations
of the matching responses as a

functicn of the number of compo-
nents in the stimulus were highly
significant {(p<€ 0.001 for each
experiment)., The similarity of
results in spite of differences in
the three experiments (e.g., types
of vibration waveforms; accelera-
tion levels; vibration seats; and
frequency ranges, spacing and
sampling of stimulus components)
sugpests considerable generality
for the fundamental relationship
shown in these experiments; namely,
that the perceived intensity of
complex vibration inputs increases
as a function of the number of
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criterion-level components in the
stimulua,

An increase in subjective in-
tensity as more components are
added to the stimulus 1is not
predicted by the independent compo-
nent method for evaluating complex
vibrations but is predicted by
the weighting method. Moreover,
if the welghted acceleratios of
the matching responses are com-
pared with the weighted acceler-
ations of the input vibrations,
additional support for the weight-
ing method is provided, since the
correspondence is quite good for
all three experiments. For each
experiment, Figure 1 shows the
mean weighted response acceler-
ation as a function of the mean
weighted stimulus acceleration for

stimuli containing one, two, three,
or four components. If the
correspondence were perfect, the

data peoints would lie along the
diagonal line. It is evident from
the figure that the data fall quite
close to the diagonal.

The results indicate that the
independent component method for
evaluating non-sinusoidal vibra-
tions tends to underestimate the
severity of complex vibration en-
vironments and that the degree of
underestimation increases as the
number of components in the
vibration input increases. The
fact that the matching acceleration
increased by roughly a factor of
two as the number of stimulus
components increased from one to
four suggests that the difference
in subjective intensity is great
enough to have practical signif-
icance. For example, a doubling
of acceleration represents a change
in severity in terms of the ISO
standard from the Fatigue-Decreased
Proficiency Boundary to the Expo-
sure Limit. The findings of these
experiments also indicate that the
subjective intensity of non-
sinuscidal vibration environments
is more accurately reflected by
the weighting method and provide
evidence in favor of adopting the
weighting method as the preferred
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procedure when a vibration envi-
ronment contains energy in more
than one third-octave band.

Comparisons of Translational
and Angular Vibrations

In addition to non-sinuosidal
vibrations, operational environs-
ments contain vibration components
in all six spatial degrees~of-
freedom--linea. motions along the
three translational axes (X, Y and
Z)}), and angular motions around each
of these axes in roll, pitch and
yaw. To be applicable to all vi-
bration environments, vibration
standards must provide criteria
for all six of these directions of
motion. However, existing criteria
for human exposure to whole-body
vibration [1, 3, 8] are limited to
translational vibrations along the
X, Y and Z axes.

Very little information is avail-
able concerning human response to
angular vibration. Even 1if a
significant body of knowledge
existed on angular vibration effects,
specific data on the comparability
of translational and angular
vibrations would be needed. A
contributing factor is that vitra-
tion intensity 1s measured in
different physical units for the
two types of vibration - m/s
(or G) for translational vibraticn,
and rad/s< for angular vibration.
Although these are bath units of
acceleration there is no physical
way to equate them,

Onc way to obtain information
on the equivalence of linear and
angular vibrations is through a
psychophysical matching technique
similar to the one used in the
experiments described above. In
this case the subjects matched
their perceptions of the intensity
of translational stimulus vibra-
tions in the vertical direction
{Z axis) by adjusting the physical
intensity of angular response vi-
brations in the roll axis. The
purpose of the experiment was to
obtain comparative data on the
sub jective intensity of trans-
lational and angular vibrations,
necessary for the inclusion of
angular oscillatory motions into
human vibration expesure criteria.

METHOD

Subjects: The subjects were
again from the vibration panel
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described above. Eleven subjects
participated in this experiment.
Apparatus: Whole-body vibra-
tion was produced by the AMRL six
degree-of-freedom motion device
(SIXMODE). The SIXMODE is capable
of motion in all six degrees-of-
freedom and has a payload capacity
of 1,000 lbs. The vibration seat
was rigidly constructed of aluminun
and bolted directly to the vibra-
tion platform. The subject was
restrained by means of a lap belt
and shoulder harness, and was seat-
ed on a standard F-105 seat insert
made up of a parachute container
and seat pad. Previous research
{2])] has shown that this setup
provides a stiff but comfortable
coupling between the seat and
subject, that has a negligible
effect on vibration transmission
to the subject cver the frcquency
range from 2 to 10 Hz.

The vibration table was instru-
mented with accelerometers which
measured the acceleration of the
table in all six degrees-of-
freedom. These acceleration
sigrals were recorded on six
channels ot a strip-chart recorder.
In addition, the signals f.r the
vertical and roll directions were
fed to true RMS meters, providing
a digital readout for the Z-axis
input accelerations, in RMS G, and
the roll—axis response accelerations,
in RMS rad/s<.

The subject was alsc provided
«»ith a hand-held potentiometer with
which he controlled the intensity
o the roll-axis matching vibration,
and a headset and microphone connect-
ed to an intercom system, for
comnunications between the subject,
experimenter, and SIXMODE operator.

Vibration: Z-axis stimulus
vibrations were presented at each
of the following frequencies:

2.5, 3.1%, 4, 5, 6.3, 8 and 10 Hz.
Each of these seven frequencies
was presented at three different
acceleration levels: the 2.5 -~hr.
FDP level [3], the l1-hr. FDP level,
and the 27 --7 - FDP level (see
Table V). The roll-axis response
vibrations were presented at the
same frequencies and were adjusted
in intensity by the subjects. Pre-~
liminary evaluations of the motion
produced by the SIXWMODE, within

the vibration regime to be used,
showed that cross-axis motion was
generally quite small, except when
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the machine was operated in roll
at 10 Hz. At this frequency,
driving the machine in roll pro-
duced considerable cross-axis
motion, egcpecially in the Y axis.
The amplitude of the Y-axis motion
was related to the roll amplitude,
o that at high roll accelerations
Y-axis acceleration became quite
large. It was anticipated that
this was likely to affect the
subject's matching response at

10 Hz, and the results showed that
it did. This point will be
considered further in the results
and discussion section.

One additional point must be
noted in connection with the vi-
bration environment produced when
the vibrator is operated in roll.
As a consequence of the way that
the SIXMODE table is connected to
the hydraulic actuators that
produce its motion, the axis of
rotation for angular rhotions in
roll (and in pitch as well) 1is
located approximately 22.9 c¢cm
(9 in) below the table. Adding the
thickness of the table and the’
height of the seat results in
the subject being seated approx-
imately 81.3 ¢cm (32 in) above the
axis of rotation. Therefore, the
resultant translational accel-
erative forces acting on the
subject are somewhat greater than
they would be if he were seated
at the axis of rotation. However,
such an arrangement is not un-
realistic, since it is represent-
ative of configurations found in
many operational situations.

Procedure: Each subject was
required to match his perception
of the intensity of each of the
Z-axis stimulus vibrations listed
in Table V by adjusting the in-
tensity of vibration in the roll
axis until he felt that its
sub jective intensity was the same
as the stimulus vibration he had
jJust experienced. For each match
the frequency of the matching roll
vibration was the same as that of
the particular stimulus vibration
being matched. Each match in-
volved a 30~second exposure to the
Z-axis stimulus vibration and a
subsequent exposure to the match-
ing roll vibration that lasted
approximately 20 to 45 seconds,
depending on how quickly the
subject achieved a match.

Wwhen each subject arrived at
the test facility, he was given a
net of written instructions which

76

explained the nature of the experi-
ment and the intensity-matching
procedure. He was then seated in
the vibration chair and given a
short practice session to famil-
iarize him with the operation of
the equipment and the matching
technique. The subject then
experienced a series of matching
runs (pairs of stimulus and match-
ing vibrations) consisting of

two matches at each of the seven
frequencies at one of the three
acceleration levels (see Table V).
Testing was carried out during
three test sessions, with a
different acceleration level in
each session. Sessions were
scheduled at approximately one
week intervals. The order of
acceleration levels across
sessions and the order of fre-
quencies within a session were
randomized for each subject.

RESULTS AND DISCUSSIONS

Table VI gives the mean accel-
eration of the matching responses
(2 matches for each of 11 subjects)
for each of the 21 vibration
stimuli listed in Table V. The
same data are also presented in
Figure 2, which shows response
acceleration as a function of
frequency, with stimulus intensity
(FDP level) as a parameter. As
mentioned previously, roll motion
at 10 Hz was always accompanied
by appreciable Y-axis motion,
especially at higher roll accel-
eration levels (approximately
0.25 RMS G_ at 4 RMS rad/s? roll).
This means that the subject
matched the 10 Hz Z-axis stimuli
with a response vibration that was
a combination of angular motion in
roll and translational motion
in the Y-axis. The effect of this
artifact on the magnitude of the
roll matching response at 10 Hz
is readily apparent in Figure 2.
Therefore, the least squares lines,
fitted to the means for each of
the three FDP levels, in Figure
2 are limited to the frequencies
from 2.5 through 8.0 Hz, and the
10 Hz data are excluded from all
subsequent analyses.

Although the 10 Hz data are not
a valid representation of the roll
acceleration required to match the
10 Hz Z-axis stimuli, they do
indicate that the Y-axis motion and
the roll motion interact in their
effects on perceived vibration
intensity. This suggests that
simultaneous motions in more than

'p-Best Available Copy




TABLE V

Vibration Stimuli

{Roll Exp.)

Frequency Acceleration (RMS Gz)
(Hz) 2.5~hr FDP 1-hr FDP 25-min FDP
2.5 .092 .153 .228
3.15 .082 .135 .204
4.0 072 .120 .183
5.0 072 .120 .183
6.3 072 .120 .183
8.0 072 .120 .183
10.0 .092 .153 .228
TABLE VI
Mean Response Acceleration
(RMS rad/s?) for Each Stimulus Condition
Frequency Stimulus Level
(Hz) 2.5-hr FDP 1-hr FDP 25-min FDP
2.5 0.63 1.09 1.48
3.15 0.68 1.33 1.93
4,0 0.91 1.55 2.79
5.0 1.05 2.11 3.86
6.3 1.64 2.92 4,94
8.0 2.06 3.74 5.74
10.0 2.23 3.05 4,02

one axls should be evaluated on the
basis of their combined effects,
rather than independently as
recommended in paragraph 4.3 of

the ISO standard [3].

Inspection of Figure 2 indicates
that the mean acceleration of the
roll-axis matching response in-
creased both as a function of
frequency and as a function of the
intensity level of the Z-axis
stimulus vibrations. It is also
apparent that the mean responses
for each intensity level are fit
very well by straight lines in a
log-log plot of roll acceleration
as a function of fregquency. To
test the statistical significance
of these results, log transforms
were calculated for the data for
each sub ject for each of the
stimulus conditions (excluding
10 Hz), and an analysis of variance
was performed based on the logs.
The analysis of variance showed
highly signficant effccts for
frequency (F=104.22, p<< .001) and
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for intensity level (F=65.70,

p << .001). This means that the
acceleration of the roll-axis
matching response increased
significantly with frequency and
with the intensity level of the
Z-axis stimulus vibrations.

The results of this experiment
demonstrate that perception of the
sub jective intensity of oscillatory
motions in roll, as indicated by
the acceleration of roll-axis
matching responses, is significantly
related to both the frequency and
intensity of the Z-axis stimulus
vibrations. Since the stimuli
were chosen from Z-axis equal
intensity contours specified by
current vibration exposure stand-
ards, the mean matching responses
obtained define equivalent contours
of equal subjective intensity for
roll vibrations, for the conditions
under which the experiment was
conducted. Of course, the exact
level and perhaps the slope of the
curves may be affected by a number
of factors which were not
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Figure 2. Mecan acceleration of roll response as a

function of frequency,

investigated; for example, the
confipguration of the vibration
seat, whether or not the subject
ts restralned, or the distance of
the subject from the axis of
rotation. However, the basic
relationship between the matching
response and the intensity and
frequency of the stimulus vibra-
tions should still hold. (Indced,
In a study in which the subjects
sat unrestruined on a flat seat
with no backrest and were ‘asked

to set levels of vibration that
they felt were "unconmfortable”
[4])], the roll curves showed
essentially the same relatlionship
tno frequency as found here,) These
results provide information on the
relaticonship between Z-axis vibra-

for cach level of stimulus intensity.

tions, measured in trauslational
acceleration units of G, and roll
vibrations, measured in angular
acceleration units of rad/s2. The
determinaticn of such relation-
ships 1s essential for the
development of improved and ex-
panded vibration exposure criteria
applicable to complex vibration
environments consisting of both
ansular and translational motions.

Experimentation is currently
underway comparinug angular vibra-
tion in the pitch axis with Z-
axis translational vibration. The
experimental design is the same as
fn the roll experiment just
deseribed, but the matching vibra-
ticn is in pirtceh rather than roll.
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Future {investigations in this area
will include additional assess-
ments of angular vibrations in
comparison to translational vibra-
tions, and evaluations of the
effects of simultaneous vibra-
tions in {(or around) more than one
axls, Results from this program
of research will improve the valid-
ity and applicability of vibra-
tion exposure criteria in complex
real~world motion environments.
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Fuselage nodalization has been used to reduce vibration levels in
helicopters with good results, (See Shipman, White, and Cronkhite,
"Fuselage Nodalization," Prescnted at the 28th Annual National Forum
of the Americun Hellcopter Soclety, Washington, DC, May 1972). The
concept of nodalization for jet-powered, winged aircraft was examined
at the Flight Dynamics laboratory using a simply supported beam loaded
with a lumped mass at each end and supported by two passive isolators
located arbitrarily along the beam. The Fibonaccl numerical search
routine was used to minimize the sum of the mean squared angular
vibration responses of the twe ends. For symmetric loading (end
masses {dentical), the optimum attachment locations were the nodes of
the free-~free beams The vibration reduction was several orders of
magnitude compared to isolators at the ends.

M2 right end mass
M beam bending moment
beam c¢ross sectional area P(x) beam forcing function spatial
orientation
arbitrary constants In beam P1 optimization performance {index
solution
left end damper coefficient t time
v beam shearing force
right end damper coefficient
beam Young's modulus * posicion along beam
. X distance from left end to left
bear forcing [unction frequency 1
isolator
response
time parc of beam torcing func- X2 distance from right end to right
isolator
tion
y beam transverse vibration
bean cross sectlon moment of z left end vibration disturbance
inertia 1
z, right end vibration disturbance
left end mass moment of inertia
right end mass moment of fnertia Greek:
lett end spring constant 8 beam damping coefficient
right end spriug constant ° beam mass density
4
wave number, mHZuA/EI B kn v forcing frequency
peam length w, system natural frequency
left end mass ] system mode shapes
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INTRODUCTION

Alrborne electro~optical packages must
operate in the noiwy alrcraft vibration environ
ment and malntain strict avcurecy requirements,
This presants u tormidahle problem due primari-
ly to two deflclenclest 1) very little infor-
mation iy available concerning the angular vi=
bration ot alrirnmes, a major source of optical
disturhances, and 2) active and passive vibra-
tion isolacion technlaues are relatlvely under—
develuped compared Lo othier areas of electro~
optics technology. Thls paper {s primarily
concerned with the sccond constralnt, although
the Interested reader is reterred to references
1-f for {ntormatfon concerning the angular vi-
bration environment. Active vibratlon control
technlques were recently surveyed and o design
procedure was reported In Reference [5]. That
work represants a significant advance in vibra=-
tiun jsolation techniques for airborne optical
packages.

The basle approach presented {n Reterence
[5] ts to design active vibration isolation
systems for installation of existing laser sys-
tems into existing airframes at known locations
This approach will work, no doubt, but does not
provide for the inherent structural properties
of the airframe and the loading provided by the
optical package. A better approach would be to
consfder a luser system whose design {s not as
yet finalized, and a candidate alrcraft on
which the exact laser location remains to be
determineds The basis of this approach is to
consider thu best pesition on the airframe for
laser attachment and also the best manner of
artachment,

Fuselage nodalizat{on {s a concept that
has been used on hel{copters for severa! years
[6]. This approach is to attach the rotor and
engine system to the helicopter alrframe at
node pointg associated with the airframe first
natural frequency. Since the forcing spectrum
of helicopters is largely sinusoldal at the
blade passage frequencies, this nodalization
results in a significant reduction in the vi-
bratory energy transmitted to the airframe by
the rotor and engine. This particularapproach
will probahly not work nearly as well for jet-
powered, winged aircraft because their vibra-
tory response patterns are largely stochastic
However, by nodalizing the first structural
mode of the optical system, one should signif-
fcantly reduce the vibration level at that
frequency as that modc is suppressed. Since
lower frequencies generally have a higher vi~
bration amplitude, nodalization should provide
a reduction in the Root Mean Squared (RMS)
disturbance transmitted to the electro-optical
package. This paper is a preliminary analysis
of nodallzation to evaluate the degree of addi-
tional vibration {solation which {5 possible,
It [s wot anticipated that nodalization alone
will provide adequate isolation, but rather
will take its place along with active and pas~
slve vibration isolation techniques as a tool

for the designer.
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The basic model to be uned fu thisanalysin
is a beam with a mass at cach end and two Jso-
latoras attaching the beam to a vibrating mount
4t arbitrary points along the beam length,
Thus, the linear and angular vibratory respanse
can be evaluated us 4 function of added manyu,
attachment points, and {solatar parameters.

MODEL DEVELOIMENT

Mode Shapes and Natural Freguencles

A simplified airborne electro~optlval
package may be thought of as u source {laser)
which bounces a beam olf of a pointing mirrur.
Figure | {llugtrates this model where the
springs k; and ky and dampers c) and ¢ act as
passive lsolators.

- L . -
" ELECTRO-OPTICAL M1RROR : E
1 SYSTEM 3
5 ) M)y, ’j
"
1 f Wik f
c b 3
1 2 :
1Z(xl) Z(L-x,)I — E

- - “ « >

1 %y

It

Fig. 1 - Beam Model of an Airborne

Electro-Optical Package H

The equation of motior for the model of i
Figure 1 {s:

At ay 3ty 3

EIE%J»?BBCJrDAat,— ;

é

+
—~

kl[z1 =yl vt) Jolxmx )

kz[z2 - y(L - xz.t)]é(x - Lo+ xy)

Young's Modulus

o1
"

E
i
H

Cross Section Moment of Inertia

“

= Mass Density

0

A = Cross—sectional Areca
8 = Damping Coefficient
[

= Dirac delta functlon

The moving supports are approximated us-
ing the base excitation theory for one degree-
of-freedom systems [7]. The added masscs and ]
attaching springs arve considered in the bound-
ary conditions [8]. Since beams are typically
lightly damped, the damping is {gnored iun the J
solution for natural frequencies and mode




shapes.

Figureas 2 and 3 show detailed free-body
diagrams trom which boundary condition equa-
tions ave derived.

Fige 2 = Free-Body Diagram of Left
Half of the Beam

The beam {s analyzed in three segments:

For 0 £ x ¢ Xy (left of both supports)

' klx =k x

yl(x.t) = [Ale "o Aje "oy

Agsin knx + A,cos knx]e

4 2 A
where kn =w % T

s For x) < x < L - x, (between the supports)

knx -knx
volx,t) = [Aﬁe « Age +

Jut
A7s§n knx + AGCOS knx]c

For L - X; $x <L (right of both supports)
k_x -k x

yq(x,0) = [Age o Aot "oy

. (%)
: Appsin k x + A jcos knx]eJtu
Mzg
v %
1 5
{ Jl J”Lfi,
K *y ’k *y
372 4’3 \
< Xy —
K, = k. *
2T k3t kg

Fig. 3 - Free~Body Diagram of Right
Half of Beam

Bo'ndary conditions are as follows:
From Figure 2,

at x =0

Mlg v
S *J,l R 1
*
v bk,
- X
1
L3 ¥
kl - k1 + k2

Jur (2

(4)
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'y, o'y,
Voo =kl Pr eI M (%)

2 H
M;-EI:——P:-Jl“—hT (6)

x axdt
ICX’-KI
Y1 = Y2 n
dyy | dyp
Ix 0 Ix ®)
3! a?
5;%4 > 5;%* (9)

oy 9] a’
El (5;¥l - E;¥*) = klyl (10)
From Figure 3,

a4t x = L-x2

Y2 = Y3 (11)
%&%{A (12)
a! pﬂ
H),’-Aza—xJ,’J (13)

(14)

2
g—x-,h (15)

I
<
1§
m
-
@ ar
X { w
it
I
=
[ Y

=
[

3? a'y,y
-El a§¥l * =) 3%t (16)

Equations 5, 6, 15 and 16 come from turce
and moment balances a4t the ends. Equations 7
and 11 arise from continulty of displacement a
the spring attachment points, and Equations 8
and 12 come from continuity of slope. Like-
wise, Equations 9 and 13 come from continuity
of moment at the spring attachment points, and
Equations 10 and 14 come from continuity of
force.

Equations l-12 are to be solved simultan-
eously for frequency, not a trivial task since
these equations'&re highly transcendental.

The frequencies which make the determinant of
the matrix of coefficients zero are the natur-
4l trequencies, and cthe corresponding set of
Apy 1 = Ly +se 12, give =nde shapes. A FOR-
TRAN 1V code was developed which searches for
these frequencies and Table 1 shows the re~
sults of a few sample calculations.

The first threc columns of Table 1 are
solutions for the tirst natural frequency us-
ing the direct analysis described here, the
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TABLE 1

Some FExample Solutions Compured to Exact and Finite Llement Answers

Natural Frequencles, Hz
Direct Finite k‘ ky X1y Xy My M, A Jl B ;2
nulysia Fxact Elament ] N/m mom Kg Kg-m
452,42 462,42 457.4 6.8 x 10°° 00 ) 0 3 0
1032,2 1148044 1256.2 0 U0 4.5 x 107 3.7 x 107
486, 1 403.3 6.8 x 10° 18 457 L045 11 x 1072
L. 1.8 m the base excitation ist
E . 6.8 x lolu N/m2 v ulz
P x0T et 7 T2 ' (%)
3 4 wtom 128w
p  2.63 x 107 kg/m
-4 2
A = B.2 x LU 4 m° Therefore, the frequency domain forcing func-
tion to be used in Equation 18 is:
wxdct molution available in some cases, and a
flulte element solutlon. For ky = ky = 6.8 x F(w) - (2-Y) K,
1613 N/n, the boundury condition i{s approxi-
mately simply supported. For ki = kg = 0, the or substituting from Equation 19,
boundary condition is free-free. Rows |l and 2 w 2
of Table | show excellent agreement for these Flw) = (1. = 1 YZ.K. . (20)
two cases. The third row {s for a different 3““3""‘_3‘5 171
loading condition, showing good agreement with (Ul ~w) o+ 4w
the finite element solution.
Figure 6 is a typinal set of apgular power
Forced Kesponse spectral density (PSD) plots for varlous para-
meter values, with Z] chosen to approximate
The angular disturbances transmitted to typical aircraft acceleration data.
the laser and mirror are thought to be the ma-
Jor caorrupting influence an system performance.
In order to evaluate the advantages of nodali-
zation, the angular vibration forced response
must be calculated. Given the set of narural
frequencices w,, and the mode shapes ¢,, the
forced response is [Y]:
L .
A . nl=hnzz1. 5K
3y (x,6) ; ): d@n(x) P(x) tod a UTRIls ER3-ME. 1 1ete . ROY
ax dx 5 ®n x
n=1 s =
. (17) -g'l
I f(c) sin mn(t—T)dT . E%
Un o
° 3
N
In the design of vibratlon control systems, -22
the frequency response of Equation 17 is often
more useful. Taking the Fourier Transform of E%g
17, the result is: Et:
L 3
- I z%il ¢n(x)dx Fluw) E;%
Y(x,e) = | &) a . (18) E5
a=l  dx w bt 28w 25
= N + 3 é%ﬁ
The frequency response can be approximated in Zq
the frequency bands of interest by cousidering Z;
only the natural frequencies which lie in that zn
band. b O -- RisHPILEY
s g R
The proper form for the forcing spectrum, ™
F(w) may be estimated from the amplitude ratio - I o
computed trom base excitation theory [7]. For FREQUENCY
a spring-mass system exclted by vibration of . ) X K
the case, the ratio of the mass response to Fige 4 - Frequency Response for Various ki, 2
84




ITACHMENT OPTIMIZATION

Numerical Scarch Procedure

The angular vibration response gliven by
Equation 18 may be used to examine the best
positions for the two isolators. The quantity
to be extremized Is the sum of the mean square
responses at the ends.

' 2
Pl = < (%ﬁ) (o,t) > + ¢ (%f) (Lyt) > (21)

Because of the complexity of the equations
given in the previous scceoion, the reader will
note that numerical search procedures will
likely be time consuming. 1In addition, the
derivatives of Equation 2l are not readily
uvallable, and may not even exigt. A few trial
attempts using a numerical gradlent search
technique showed no systematic movement towards
any fixed number. Exponential overflows and
very erratic values for Pl suggest that the
derivatives of Equation 2! are not well be-
haved. Gradient search technlques thus are not
appropriate.

The Fibonace{ smarch procedure ylelded the
limited results summarized in Table 11 [l0].
The procedure employed in generating the num-
bers given In Table 11 was to fix x, and search
for the optimum x); then adjust x; to the opti-
mum %}, and search for the new optimum X,.
Since the model of Vigure | is symmetric, the
optimum x| should also be optimum for x9. The
result of Table I1 is that it appears that var-
tations in x| and x; have a distinct effect on
the mean square angular response of the beam
ends.

DISCUSSION

Notice from Table I1 that the values for
ky and kz also affect the optimum locations xy
and X5. The last three rows of Table 11 show
mean square values almost two orders of mag=
nitude lower than for higher values of k; and
ky. This is also consistent with the general
theory of passive isolation where decreasing
the spring constants decreases the lsolator
natural frequency, and thus decreases the
higher frequency vibration response. Luckily,
Table IT1 indicates that the optimum choice for
X, and X, doesn't change substantially with
céanges %n kl and k2' If that were not true,
the numerical optimlzation problem would be
four—-dimensional instead of two-dimensional.

From Table I1, x| = x5 = ,209 is the val-
ue converged upon by the numerical search pro-
cedure. That general range for x| and x5 was
verified by computing angular RMS values of
the ends by an independent method. When kj
and k, were changed, then the value for PI
also changed, but given a value for k; and ky,
the program converged on an optimum for x); and
x2 as summari:ed by Table II. Although the
last three rows of Table Il imply that further

TABLE 11

Results of Numerical Search Procedure

kl . k2 xl, tn x2. m P1, rad2
N/m (Optimum) (Fixed) (Approximate
Th 1571 0. 2.61 x 10°
10'° .227 L1571 2.11 x 10°
10'¢ . 209 227 2,23 x 10”!
jot? .209 .209 1.58 x 107
1o” 204 .209 6.52 x 107
10" ,204 . 204 5.6 x 1077
to” 2 .2 4.9 x 107

L

reduction {n PI {s possible, those three rows
were generated by reducing rhe ' searching grid,
and therefore represent retinements {n the nu-
merical optimization procedure. The last row
of Tuble I1 represents the last successful re=
finement using the Fibonaccl search; some other
numerical search routine might yield even fur~
ther refinements, but would likely exceed ma-
chine tolerances.

CONCLUS JONS

Applying nodalization to airborne clectro-
optical packages can provide additional vibra-
tion reduction of several orders of magnitude
for rigid installations. When passive isola~
tors arc used nodalization can stfill supply
additional reduction, although not nearly as
much as with rigid installations. The optimum
isolator attachment locations do not depend
significantly upon the isolator spring con-
stants. This means that optimum attachment
locations can be chosen Independent of choice
of isolator.

To provide a rigorous analysis of vibra-
tion isolation and control, the use of active
control techniques should be considered to-
gether with passive isolation and nodalizattion,
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DESICN OF TURBINE BLADES FOR EFFECTIVE SLIP DAMPING
AT HICH ROTATIONAL SPEEDS (U)

David I.G, Jones
Alr Force Materlals Laboratory
Wright-Patterson AFB, OH 45433

and

Agnieszka Muszydska
Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland

(U) The key to designing turbine or compressor blades for high
levels of slip damping, at high rotational speeds, lies in ensuring
that the root geometry is such that the frictional forces acting

on the blade vemain as close to optimum as possible over as wide a
speed range as posaible, Many blade geometries have, in fact, been
proposed and are being used but success in achieving high levels of
8lip damping has not been widespread, In order to look more closely
at this problem, this paper will examine the dynamic behavior of a
hlade having a root geometry compatible with low frictional forces
at high rotational speeds, somewhat like a "Christmas Tree" rook,
but with a gap Lntroduced which will close up only at high speed.
Approximate non-linear equations of motion are derived and solved

T

using a method of harmonic balance. Numerical examples are discussed,

INTRODUCTION

Compressor and turbine blade failures
caused by excessive vibration can and oftea do
arige in jet engines whenever high flow-induced
excitation forces, high static stresses and
low modal damping levels occur at the same time,
While blade/disk interactions will complicate
the response behavior of each individual blade,
and cause circumferentially changing peak
strees levels around the disk, it is sglip at
the blade/aisk interface which provides a
major mechanical gource of damping, in addition
to the aerodynamic and material sources.
Attempts to increase slip damping, by means of
mid-span or tip shrouds, or by means of mechan-
izal connections between adjacent blades, have
not usually been very successful, perhaps
because of the tendency for corresponding
points on neighboring blades to vibrate with
only relatively small amplitude and phase
differences except where extreme efforts are
made to mistune adjacent blades relative to
each other {,e. the effect is usually to
stiffen rather than disaipate energy.
Certainly, the analytical difficulties of
predicting the response of complete blade/disk
systems with slip at each blada/disk interface,
or between each blade, are formidable(l,Z}and
will not be addressed in this paper.
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In this paper we shall examine a con-
figuration in which each blade will slip rela-
tive to the disk rather than relative to
neighboring blades. With proper attention
pedd to the static and dynamic forces involved,
such a configuration can lead to high slip
damping even ut high rotational speeds. 7The
regsponse behavior of such a system is highly
nonlinear, 50 we shall assume that the imped-
ance of the disk is infinite, as a first
approximation, in order to make the analysis
more tractable. Figure 1 shows such a blade
concept, as compared with a simple dovetail
root and a Christmas tree root. The gap be-
tween the outer step of the blade root and the
disk 1s very important since it must close only
at the selected rotational speed above which
some damping is required.

ANALYSIS OF DYNAMIC RESPONSE

In order to model the dynamic regponse
behavior of the blade in a single mode,
usually the first, different physical models
are required depending on whether slip is or s
not occurring at the root or at the sub-
platform. The blade is theiefore represented
for purposes of analysis as showa in Figure 2,
The variocus physical wodels which represent the

iy




blade undexr different conditions are shown in
Figure 3, The parameter B defines whether slip
occurs at the lower dovetall or whether it is
locked at his point, whence Xz = 0; and £y de-
fines whether the maes mj, representing the
sub-platform, ia slipping againat the disk or
16 locked in place by the frictional forces,
for which case X3 » 0. The masses my, my, and
my and the stiffnesses k) and ky must be melect-
ed in accordance with the blade geometry. The
disk impedance is assumed to much greater than
that of the blade, for simplicity.

16 QOVETAL 1v) CHRIITMAS TRLE 1c] wOOMED DOVEIAL

Figure 1. Some Blade Ceometries

BLADE @ +~—S$

N

SUB-PLATFORM

Figure 2, Blade Model

By experimental or analytical (e.g. fiuite
element) methods, one can determine the ratio
of the response at any point ] to the force
applied at any point 1, i.e. the compliance
Gij(w), and this data is then used either
directly in a modal analysis or indirectly
to determine m;, my, m3 and k;, ky for the
discrete element model. Both methods should
give comparable results 1f the respective
agsumptions and simplifications are consistent,
but the discrete element model is the easiest
to analyze.
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Figure 3. Blade Modelization

For the model, in Figure 3, the equation of
motion can be represented for all cases by
the equations:

“ n: o © 1< g (-1
LR In[x1 +dx - 4-2)(2) (__._—-—--J‘.z )+
sgn {(0-00) + 1, k Ayy o Ny
*+ k¢ 1 ) lgg v gXp) - gt g %)l

w5 Coswt m

{n }; + R sga X, + kLXK, = X)) = X101+ sgn B)

(1 - egn (R-fa)) + 4k Xp =0 (2)

- y . Uk v . ng
Hm1 X, 4 ‘"1"1 agn Xy 4 kl (u_x il) xll ¢ k) () + apn :-l)

k) 3

‘I(kl‘lv'!)(]ln‘ixn (1et1p) ] = 0 (¥}

2

vhere k = kl \t2 /(k1 + kz) (4)

is the equivalent stiffness, my, my, and my are
masges, k) and k, are sub-stiffnesses, n is

the blade loss factor, S and ware the amplitude
and frequency respectively of the exciting force
u is the dry friction co-efficient, N and Ny
are the normal loads between the blade root and
the disk, R and Ry are co-efficients depending
on the root geometry [3,4] and 8, 31 are co-
efficients of the slip thresholds. If we let
Rp be the rotational speed at which the gap
A0, then different solutions occur, depending
on whether 01<Q; or 0204,
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CASE 1, 2410,,B50

The analysie is the same, essentially, as
that for a blade with a simple dovetail root

(3-5]. The equations (1) to (3) reduce to:
AR R R T AT R JON: (s
", + WK ogn K, + 4o, - k) - kX, + 2KX, ® 0 (%)

We look for an approximate steady state
harmonic solution of the non-linear equationg
(5) and (6) in the form:

%(e) « D Cos (we 4 ¥o8) and Xy(t) = AcCos (wt+ V) (D

‘This 18 uccomplished by expanding the function
sgn [=AwSin(wr+7)) in a Fourler series and
retaining the first term only [4). The

3 _ following results are obtained for the

amplitude A and the phase v,

—ad, +/8, 2 +a? -0 9

- (€]
4
D= /I 1 - vy /w4 (An 4 o011 D) (9
Y« ercean Avman - a(l - v+ n?)
Al (vag - (14 n0) (m +my)) = nav (10)
An-zuz +a
$ = arct
O T T A P D - e an
where:
4 .
R e U AR RN G TR a2)
’2 - nkvz/(l + nz) a3
#y v lv - 124 1« wd 14y

.

a = 4uN R/ v - .1,z/k - (”,ul)z

The golution (7) with amplitude A, expression
(8), exists when S/ad . From this we
can define the coefficient of the slip
threshold as:

8= 5S/a~ VI, (15)
When n = 0, the non-linear equations (8) and

(9) reduce further to the very simple form

[1]:

|§|.Vq-(u9111-nz 6)

o w/ap? (1w - gl ]
2 2 2
Pj. 1 [1-(/9°0 -~ wmy/u) &2
sl % ‘/ . e & an
W) (L4 my/my = my/my)

; In these equations R depends on the blade and

: root geometry, For example, in earlier in-
vestigations [3] for a twisted blade of length
L, twist angle a' between root and tip, dove-
tall angle ¢ and dovetail radius Ry, it was

ghown that,
R = Ry Cos ¢/L

and that 5 should be replaced by S Cos *'.

CASE 2, 1< flg,B €0

In some range of the parameters, i.e.
when B€ 0, the solution (7) does not exist.
This corresponds to the domain of existsnce
of the linear solution for the one-mass
system. In this case, the equations (1)
to (3) become:

.l'x;+x(xl+£lix)-sco-m

(18)
He-o (19)
The solution of (18) 1is
X (t) = D* Cosfut ~ %) 20)
with Dh e §/k WT (21)
and é* e agctan n/(l - v) (22) ;
CASE3, n sno, 81> 0

51ip now occurs at the mags m; and ceases
to occur at the mass mp, which becomea
"locked'" at high rotation epeeds, The slip i
at the mass m3 can contxibute significant 3
amounts of damping if the term WN;R; In
equation (3) can be made to remain relarively
small through proper control of the blade
root geometry.

The equation now takes the form:

H%+ﬁ(2%+ﬁ)-ﬁ(5ﬁ+xy-sm.m (23)

[

¥y + kg LR - X)) (g - X))

0
+k (u x3 + XJ) + uNR

2 [T XJ -0 (24)

1

The solution of these equations is written in
the form:

Xy = by, Cos (ut + Yip = 8;yp) end

(25)
13 (t) = Ay Cos {ut + yn)

Then again by the method of harmonic balance,
it can be shown that:

L -ty 8+ ale - a0y (26)
‘u 19 4 1\¥5 W5

'

X 7 7 2
LI ,/%A,,(i AT AR RN N I L T WS W S I }/(x + n?y

Appvmyh = s a - v ¢+ nz) an
{18

Yy ¢ areten

A"'-z(v.-) -+ n-l)(-l ‘e - '"'l"hl'
1

At ¢ a;
1

d“ ® arctan

2 {19)
Ay’ - A”ll(l + %) - noy




T

e C Ui

ym! I H'N:, ' R A L)

on
g, ¢ b, - ot enliaeah

) [RH)]

N TR T VI

[§)}]
a * ‘p",lil'

()
v oo owdng s erup?

The solution (25) exlsts when $/ay > /5,
From this we define the appropriate coefficient
# of the u4lip threshold by:

=5/ - -@3 )

CASE 4, > u, BLo

In some range of parameters 1.e, 840, the
gsolution (25) doex not exlet, It corresponds
to the linear case, lor which the reievant
solution is:

X () = ] com(ut - 8

(36)

-
with 0} stk /0 - v)T+ 2 3"
snd L “ arctan n/(1 - v) <38y

Figure 4 {llustrates a graphical method for
conatructing the solution from these equations,
for the case n = 0, 1In thls figure, note that:
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. — e

1§ |3 . L3 ®
v,2 uz 1 2 1 2 ek,
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Flgure 4 illustrates clearly the reglons of
existence of the non-linear solutions

(| a] =0 for varlous values of S/ay. When
n =20 and m3 = 0, the solution further simpli-
fles to:
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where it is recognized that v = uzlufl and
W] = /EI7EI. For most practical cases Rj = 1
in these equations and for a twisted blade, as
before, we replace S by § Cos a«', We now have
a formal solution for the cases <&y and

13 1lg, and a numerical example will be dis~
cussed afrer a review of the static blade
behavior. Finally, note that the problem
addressed here ls quite similar to that dis-
cussed by Willlams and Earles [6].

Flgure 4. Graphlcal Construction of Response
Solution

ANALYSIS OF QUASI-STATIC BEHAVIOR

Referring to Figure 5, the radial movement
y of the sub-platform under the action of the
centrifugal load NRDQZ due to the outboard
part of the blade will be less than the gap
A up to the speed fly vhere:

n = IR (42)

vwhere Ry is the average radius of the blade
relative to the rotation axis of the disk,
When 0> Q,, the spriags kp will come into play
and provide the normal load Ny on the mags mj.
Tt 1s easily seen on the basis of static
cquilibrium that:

2 2
N, = W RDGU - 65) 43)
1 1+ kp/ 2 kp

which means that kp»k, if a significant reduc~
tion of the cencrifugag loads on the blade is

to occur, as ls necessary. As an {llustration,
consider the blade for which the static exten-
sional stiffnesas kp of the root below m3 is
provided by a uniform segment of cross sectional
area Ap and length fp, Then:

kn = E AD/fD (44)
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Simllarly, Lf cach spring kp iv conaidered to

be represented, as an approximation, by a canti-
lever beam of length R, thickness hp and
hreadeh by, then:

k = 3Eb K /1200 (45)
P pop p :

For W<€ 4y, the normal Joad N on the muss my is
given hy:

N W Ry o (46)

} W RyQt

* Flgure 5. Quasi-Static Model

NUMERICAL ILLUSTRATIONS

The equations derived in this paper per-
mit one to predict the effects of rotational
gpeed on the dynamic response of any blade
provided that one knows the modal masses and
gtiffnesses, and the exciting forces. Un~
fortunately, in practice, this information is
rarely available at the time it is needed.
This Is especially true of the exciting forces.
As an example, the work of Hansen, Meyer and
Manson [7] represents a very Interesting early
invegtigation of blade dampinpg as a function
of rotation speed. The blade geometry data
[8] indicates that they used a rectagular
section blade of length 50.8mm (2 inches)
breadth 15.3mm (0.602 inches), width 1,83mm
(0.072 inches) at the tip and 3,05mm (0.120
inchaes) at the root. The root was cylindrical,
of diameter 7,87mm (0.310 inches). 1In the
tests, the blade was attached, alone, in a
33mm (13 inch) diameter disk and excited by
impacting it with a falling steel ball., While,
therefore, the results are very Interesting
and useful, 1t 1s difficult to obtailn accurate
excitation force data from this source,
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Ewins [9) :ecently desceibed o test system
in which air jets were used as a means of ex-
citing the bladus. The test results ludicate
good qualitative agreement between linear
analysis and experiment for several tunad and
untuned blades In a flexihle disk, but no
eatimate of the exclting forces la glven
directly. Other lnvestigatora [0, 10, 11} are
equally unlufurmative as far as thia aspect of
the problem 18 concerned. References [12~14]
do geem to address the question to some extent,

The cyclic forces acting on a rotating
hlade-digk system arise as the blades cut
through a quagi~stationary alrflow pattern
generated hy the fixed blades (vanes) ahead of
them, The stationary pressure fleld along a
circular path through the center of cuch sta-
tionary vane possesses o minimum hetween cach
vane and o maximum at cach vane station, as
illustrated in Figure 6. 1f the number of
fixed vanes 1is n, then the rate of repetition
of the pressure pulses crossing each rotating
blade {a n /60 Hz, 1f Q is the rotatiun speed
in rpm, A Fourier expansion of this repeating
pulse then glves:

[
s{t) = 5(V, Z a, Cos(aniit /60) 4

[3)

where ay o0 1 {f the pulses ave sharp, The
amplitude § (V, Q) dependa on the mean
velocity V of the airflow through the stage,
which in turn depends on the power setting of
the engine, as well as the rotation speed Q.

It is not easy to determine S (V, 9) analyti-
cally and little experimental data from
Industrial sources seems to have been published.
So we shall consider only a few 'typlcal
cases, in the present paper, inorder to illus-
trate the effect of this important parameter
on the blade response. Each term of equation
(47) gives rise to a possible excitation of 2
blade mode, and a typical Campbell diuyram is
constructed by plotting the frequencies mn{/60
against @ for varlous values of m, along with
the blade resonant frequencies fy as a function
of Q, as illustrated in Figure 7. As is seen,
the fur mental mode 1s excited by the blade
passage excitation when 2 1s such that

f1 = 1 n@/60 (n th engine order, point A), by
the second harmonic (2n th engine order) when
f1 = 2 n2/60 (point B) and so on. The Campbell
diagram is therefore a useful means of esti-
mating where the vibration problems are likely
to occur, but again it gives no clue as to
excltation force magnitudes.

We shall now examine a specific blade
geomektry, considered in previous investigatlons
{3, 4] and representing a typical low pressure
compressor blade, The main dimensions of this
blade are:

Le=20cem
W= 0,20 kg (0.44 1b)
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/‘/’ koo 20 %107 N (1.2 x 10° Lh/in)
l % - ’ Jl\_J\E * 0,057mn (0,00225 Inw)
/ - i -6 ,2 2 .
—/ ! oy g Wow 8,342 x 1077 (0°-uf) Newtons
Ii/ / " AASTALAM 42 ° i3
N = 8,342 x 107"0" Newton (1,875 x 107'r* Lby)

L {)

' / with A, “ 12000 rpe

. /;” 4 From equations (18), (19), (40), (41) we

! |

| | can then calculate the response ol the blade

(X) )
o l—,'n=| ' for the cases fi<{lp and Q2 Ng. Hesults are
ALONG BLADES shown in Figures 8 to 1ll. From these we can
ke "t () PRESSURE PATTEINE then determine the apparent modal damping nj,

defined by the "half power bandwidth" methad,

and plot against a/S (for Q<fy) or ay/§
Figure 6, Flow Induced Loads (for 19 0p). The results for this particular
blade are shown in Figure 12. It is seen that,
for 1< Mo, ny increases rapidly as o/S falls
and reaches a very high maximum value hefore
finally falling to zero as o/590 1,e, Q0.

A
p ongt 98 g0t On the other hand, for iy, the damping
8 ean rapidly increases as ay/S rises above the
/ tndl threshold level (below which a new peak occutrs
ty / at lower frequency and with low damping),
a w © raaches a peak of about 0.20 and then drops
more slowly as &/S increases further.
Sni}
/ 0 I - 1
t, o MODE |
, 2 / r L -umEar [x.s6)
" 7 z | @ /8110 “(
T T L ", "0li6 ]
e] K It
g < 109 i}
2 x E |
< -k ’I NONLINEAR
&5 ‘Zt : Q.J/‘Iiulsl
e r l Bt
x [}
o 4
I 1 \
2 o / 1
s F
S A I F
o i 1
- ! NONuNEAR\
1% 78]
1™ - —
9 50 106 150 200 250
FREQUENCY - Hz
Figure 7, Campbell Diagram
The other ralevant magnitudes are given in the Figure 8, Blade response for Q< Qp, 8>0
nonenclature, as specific numbers sssoclated and a/S = 10

with the relevant symbols, From these numbers
we see from equations (44), (45), (42), (43),
and (46) in succession that:

kp = 2.10 x 10° ¥/n (1.2 x 107 Lb/in)
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Figure 11, Blade response for >0y, £;>0,
various ay/S

From the values of N and Ny given eariler,
we can then calculate a/S and ay/S for any
asgsumed values of 8, We shall consider two
cases namely (1) § = 22,24N (5 Lbf) and
(11) § = 1.69x10-6 nﬁﬁn(- 3.3 x 1076 03/ 2pgp
with  in ¥pm. The first represents a con-
stant force, as {n Hanson, Meyer, and Manson's
experiments (7] and the second represents a
more likely situation in which $ increases as
N increases e.g. S = 12,24N (S5Lbf) at 12000
rpm, 31.14N (7.0 Lbf) at 15000 rpm and
5,96N (1,34 Lbf) at 5000 rpm. Tables 1 and 2
show typical calculated values of a/5, a1/$
and ni, from Figure 12. The appropriate
expressions for a/S and ap/s are:

(1) S = 22,260 (5 p

Wk L oem005 %1873 % 10%% ol 0y
S rS L cos o' Cory 20x v x 550,724 x 0.5
o va9 x0T ? 48)
" sy ox 0.1% v 1,856 x no"‘m*.nb
T Y TYdET xS x0T
+ 9.2 w107 iy (z9)
U0 8« 169 %107 0¥ wevron (3.8 x 1078 232 g
. Gk 4w s x 1838 g 107t 0
T L T I e T
- 1000 0!? 50)
Mo Een L E 0.3 x 1,836 x 10 (o)
H ~ 5 com o'

T 18 a 107 0 g gy
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Figure 13 shows the varistion of n; with @ for
these cases. It is esen that high damping
occurs at high speed, as expected., Obviously,
the particular numerical values can be changed
to reapresant other conditions, but the approach
and general behavior remain the same,

One other possibility can be examined,
namely a blsde of the type having a hinged
root with mating surfaces now paraliel to the
plane of rotation of the root, snd discussed
aluo by Hanson, Meyer and Mangon (7], Tor this
type of blade, Ny remains just about constant
at all speeds, while the force S changes,
usually increasing &s N incresses., This
would account for the high damping achieved by
this type of blude, since a9 would be nearly
conatant and a1/8 would ehange in such a way
that n; would increase as (I increases.
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Figure 12, Model Damping Versus a/S or a1/S
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Figure 13, Modal Damping Versus Rotational
Speed

CONCLUSIONS

It hag been shovn that a specific con-
figuration of compressor or turbine blade root
geomatry, in which part of the root contacts
the diek only at high rotaticnal speeds, can
provide high levels of slip damping, provided
that the releavant stiffnesses are properly
selected. The analysis given in this paper
can provide the basis for prelimfnary design
investigations, but laboratory and apin pit
testing will be necessary to establish the
accuracy of the approach and to develop the
specific configurations most appropriate for
practical application, The changes in blade
geometry needed to optimize this type of
damping do not represent very large departures
from current practice, nor need they represent
any welght incteases over current blades.

Apart from experimental and spin pit
testing, a logical follow on effort would in-
vestigate the effects of finite disk compliance,
and hence of multiple blade systems, on the
dynamic behavior, Howewer, one would expect
high levels of slip damping to still be
attainable, It is hoped that this paper will
stimulate or encourage such investigations,
gince tha need for high damping in rotating
blades is becoming ever more urgent,
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NOMENCLATURE

A Amplitude of response of mass my.

Ary Amplitude of response of mass m,.

Ap Cross section areu of blade between root
mating surfaceg and platform

(258 mm?/0.4 1n?),

an m th Fourier coefficient of excitation
force,

bp Breadth of platform (50.8 mm/2 ins.)

D,Dry Amplitude of response of mass my
(tip of blade),

D¥ply Amplitude of response of mass m)

(no slip).
E Young's modulus of blade miierinl
(3 x 107 Lb/in2/ 2,07 x 1011 N/m2)

£q 1 th resonant frequency (Hz).
hp Thickness of platform (2,54 mm/0.1 ins).

131 Effective stiffness (30000 N/m).
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m
m)

n3

R, Ry

Effective atiffneas (80,000 N/m).
Effective stiffness (21,800 N/m).

B8lade root static stiffness

Platform static stiffness (See Fig., 5).
Length of blade (20 cm).

Length of blade section between root
mating surfaces and subplatform

(25,4 mm/1 1n),

Length of subplatform (12.7 mm/0.5 ins).
Effective maus (0,036 kg).

Effective mass (0.0033 kg).

Lffective masa (0 kg).

Integer (m = 1, 2, - =),

Number of fixed vanes.

Net normal load at dovetaill mating
surfaces,

Net normal load at platform.
Nondimensional cocefficients

Radius of dovetail sliding surfaces
relative to root rotation center (1 em).

Radius of blade relative to disk axis
(381 mm/15 ins).

Driving force.

Time (sec).

Average airflow velocity.

Weight of blade (0.2 kg/0.44 Lb),
Displacement of mass mj.
Displacement of mass mj.
Displacement of mass m,.

Friction parameters

Twist of blade tip relative to root
(Cos a' = 0.724).

Slip threshold coefficlents,
Phase angles.

Phase angles,

Gap

Loss factor (0.0l for i1llustration).

i

ol i .




S

u Coefficlent of friction (0.15 for
{1lustration). anly SR TR N E ‘l_h.'l-.)(A‘l!’)A-." ]43”14
v m/ml -~ nondimensional frequency para- - o - R R
meter, . om ., ' Cen T e e
iR ofn " n/s m .
] v w/wyy ~ nondimensional frequency
= parameter, " " - - -
1 ton ti.n [N - -
] #1-8¢ nondimensional paramecters S e T - -
HET RIS .04 B -
[ Angle of dovetnil mating surfaces ruon BN .17 - -
relative to base of root o n.a 4 B :
' (Cos y = 0.5 for {llustration). - o oot ) _
w fl‘equency (rnd/sec). 1ounn 1w a.n - -
1. oo 0 0.l
wy Resonant frequency with A> 0 (124 Hz). 1 soan EN T .01
14001 - - A4 0 -
wpq Resonant frequency with no slip at My 14000 . . hanH 0,14
(146 Hz) N 1n00n - . 7.4 0.15%
1700y - - B4 i1y
e - §1 .
rotation speed (rpm) 18000 . 9,00 0,112
R Critical rotation speed for A = 0 (rpm) 19oun - 10.67 v.duz
T00ow - - 11,06 l 0,04

TABLE 1 - DAMPING VERSUS W FUR $ = 22,761 (5 LBF)
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100 0.0099 - - - E
. 500 0.247 - - - E
1600 0.989 - - - E
1 2000 3,96 0,295 - -
3000 8,90 0,130 - -
; ‘ 400 15.84 0.070 - -
5000 24.7 0.042 - - ,
' 6000 5.6 0.078 - - N
7000 48,5 0.021 - - :
! 8000 n1,1 0.014 - - E
‘, 9000 80,1 0.012 - - :
10000 98,9 0.010 - - ;
s 12000 142.% 0.010 0 ¢}
: 13000 - - 2,45 0.010
! 14000 - - 5.09 0,187
! 15000 - - 7.93 0.140
16000 - - 10.96 0.100
17000 - - 14,2 0.076
18000 - - 17.6 0.062
, 19000 - - 21,2 0.050
20000 - - 25.1 0,042
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A SIMPLE LOW=COST TECHNIQUE FOR MEASURING MATERIAL DAMPING BEHAVIOR

by

David 1.G. Jones
Air Porce Materlals Laboratory
Wright-Patterson AFD, Ohio 45433

(U)Muhy methods

the tosts,

have been develouped for measuring the damping behavior
of vlastomeric and other materials, includingy resonance, mechanical
impedance and vibrating beam methods.
weethods have in common is the expensc and inconvenience of preparing
appropriate tect specimens and the considerable time nheeded to conduct
A neoed appears to exist for a simple method to yuickly
obtain datra, even if only approximately accurate, as for example in
avaluating samples for quality control. This paper will describe a
simple toest procedure in which a cylindrical specimen of damping
mitkerial supporting an added mass is impacted by a small "hammer".

The force transmitted through the specimen is measured by a force

gage and the acceleration experienced by the hammer is measured by

an accelerometer. 7The transient signals so generated are displayed

on a storage oscilloscope, and the modulus and loss factor of the
material arc derived from comparisons with a simple transient analy-
sis of a single deyree of freedom system having a complex stiffness
for the spring clement. Examples and test data are discussed and
comparisons are made with results of other methods of measurement.

One feature all of these

1. [NTRODUCTTOH

The various methods currently
used to measure damping properties of
elastomeric materials require some
effort to prepare specimens and to
conduct and analyze tests. If onc
wishes to completely characterize a
specific material over a wide range of
frequencies and temperatures, there is
Little chance of avoiding this, so that
typically one or two days are nceded to
prepare specimens, mostly waiting for
adhesives to cure, and at least one day
to conduct the tests. This is no way
to proceed if one wishes merely to
screcn material samples, as in produc-
tion control, or to select a few
candidate materials, for further evalua-
tion, ont of a large number of possibi-
litics. tPor such purposes, it is often
sufficient to use data at a few tempera-
turces and at one freduency.

The test technique discussged
in lhig paper is not only extremely sim-
ple to set up, to preparc specimens for
and to use, bub it also requlires only
standard vibration laboratory equipment.
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Absolutely no new ideas or concepts are
involved; however, it is time that
simple methods were used to perform
simple tasks. The method is essentially
that of observing and analyzing the
transient response of a damped single
degree of freedom system. The particu-
lar geometric configuration used con-
sists of a large metal block supported
at each end by scft foam rubber
"springs" and joined through the speci-
men, at the center, to a force gage.

As the block is impacted by a small
hammer, the mass~specimen system will
exhibit decaying free vibrations and

Lhe period and the amplitude ratio of
successive maxima of response can be
measured from the oscilloscope trace.
The use of a storage oscillascope allows
one to conveniently record the response
trace as may times as desired. Tempera-
ture control, where needed, was obtained
using an environmental chamber. Test
results for two materials were comparcd
with tkose obtained by resonant beam and
simple resonance tests, and the agree-
ment was geQerally found to be good.
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2. ANALYSIS

The single deygree of freedom
system shown in Flgure 1 is subjected
to an impulsive load 86 (t). The
spring stiffness is represented by a
Bock nmodel:

F =k x + (kn/|w]) (dx/dt) (1)

which reduces to a complex modulus

k(1 + in) if the displacement x({t)

is given by x = X exp{iwt), The complex
modulus representation is quite a close
approximation to the behavior of real
elastomeric materials provided that the
true variation of k and n with tempera-
ture and frequency is allowed for.
However, for this representation, the
transicnt response can be determined
only thiough utilization of a Fourier
Transform, because the model (1)
contains the frequency w directly. If
58 ({t) is the applied load, then the
Fouricer transform of the load is given
by:

S(w) = (l/an/N se(t) e %% ge = g/24

"

For each clement § dw of the transformed
excitation, the response ist

5 (a)

¥ o=

0 (2)
-mw? + k{1l + inw/]u])

Therefore, applying the inverse Fourier
Transform:

iwt

S v €] dw
x(t) E—
2“-/:«. -mw? + k(1 + inm/lm[)

(3)

For the ideal case congidered here,
where k and n are independent of fre-
quency, it is instructive to evaluate
the integral in equation (3) by

contour integration in the complex
frequency plane. The poles are the fre-
quencies for which:

w’m/k = 1 + inw/|wl (4)

The roots of this eguation are complex.
If we therefore write w = w_ + iw,,

: x i
equation (4) becomes:

(w2 = wf + 2iw w) (m/k) =
in(w. + iw.)
—x i (5)

2 4 ne
we wf

Equating real and imaginary parts gives:

(u; - wi)(m/k) - ) - "mi/ mg * mi)

(4)

(2mrmi)(m/k) = nmr/Jm; + mf )

If we now substitute for Jui + wf
from equation (7) into
egquation (6), we have,

and

(mg - wi)(m/k) =1 - wa {m/k})

M§ + w? = k/m (8)

From eqguations (7) and (8) we now have:

2u; (m/k) = vk

R wy = (n/2)vk/m (9)

Soowy = £/ (k/m)y (1 ~ n?/4) (10)

We have therefore found the values of
o, and o, provided that n<2. The poles
and the path of integration are shown
in Figure 2. The response x(t) is
equal to 2#i times the sum of the resi-
dues at the poles. The residue Ry at
the pole w = we + iwi is:

S eiwt(wr - iwi - w)
R1 = Lim
2nm(wr - iwi - w)(mv+imi-m)
WS Wy + lmi -
(11)
= -5 ety Y10 m, 12)
and R, = 8§ etlmuy ¥ l“’i)‘}/’411“~“"1.“ (13)

in a similar way. Finally, therefore:

s e_(nt/z)/k/msin(F/(k/m)(l-n2/4a
x(t) =

m/{k/m) (I ~ n2/4) (14)

Thie solution represents the informa-
tion needed to deduce k andy from ex-
perimental data. The ratic of
successive maxima is given by:

x/Xg = e_"n/2

=
It

(2/n) ln(x1/%q)
(15)
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and the time T between successive zero
nrosgingg 18

T V(k/m) (1=-n2/74) = =

wp = K7W = w/T w773 (16)
and K = mn2/T2 (1-n2/4) (17)

From the experimental traces represent-
ing x(t) as a function of vime t, one
can read off x;/xg and T and hence
deduce the loss factor n and the stiff-
ness k at the freguency Wy Typical
predicted response traces arc shown

in Figure 3.

k(l+in)

Figure 1. Mass - Complex spripng system
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1
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Figure 2. Poles of System, integration
Path and Modulus of Integrand
versus frequency
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3.  EXPERIMENTAL INVESTIGATION

The test system ueed s
illustrated in Figures 4 and L. 7Thoe
masys m rested on the specimen,which
wad a cylinder of cross sectional arca
A and thickness h, and was impacted by
the hammer with accelerometer attached.
Several different elastomeric material
gpecimens were evaluated, as summarized
in Tables 1 and 2. These included an
acrylic adhesive (oM-467, 3M Co.) and a
gilicone elastomer (BTR, Lord Mfg. Co.)
at several diffevent temperatures.
Typical oscilloscoupe traces for these
materials are shown in Figuresé to 14.
From cach of these traces, T and x;/Xy
were read off. The first half cycle
was not used because of the finite
duration of the actual loading, but
sunceeding half cycles were usable.
Then E was calculated using the
usual equations relating stiffness to
modulus:

mw? = (EA/h) (1 + B(A/A')Z2)

where 1 + B(A/A')2 is a shape factor
which corrects fur the finite length

to breadth ratio of the specimen [1].
Typically g%2 for an unfilled elastomer
(e.g. 3M-467) and B31.5 for a fiiled
elastomer (e.g. BTR). The results are
summarized in Table 2.

In order to compare the
measured data obtained by this method
with results from other methods, graphs
of E and n versus reduced freguency

were used, with construction lines
suEerlmposed to directly display
temperature and frequency i.e. a
reduced temperature nomogram. This
meLhod of data reduction and presenta-
tion is described in an earlier report
[2]. The results are shown in Figures
15 and 16. It is seen that agreement
between the various methods is quite
good. Some scatter is evident though
not much more than for other test
methods. It is certainly possible to
distinguish between high and low loss
factors, and high and low stiffnesses.

Flgure 3. Response versus t/k/m
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Figure 12. Measured Response at 0°r

(-18Y¢) for BTR
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Figure 13, Meagured Respunse at 150%¢
(66 °C) four HBTH

Figure 14, Measured Response at 240%¢

(116¢) tor BTR
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Figure 15. Graphs of E and y versus
Reduced Frequency (3M-467)
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TABLE 1

3 MEASURED DATA FOR 3M-467 ADHESIVE

Circular Cylindrical Specimen

m= 743 gm, A = 1,61 cm?2(0.249 in2), A' =

2.85 cm2(0.442 in?), h = 0.64 cm(0.25 in)

Temperature| |X, T sec| w, Hz | E 1b/in? n
°F | °c Xz
0 ~18 [ 1.241{ 0.0018 278 7970 0 14
30 - 1]11.40] 0.0020 250 v300 0.21
75 24 | 6.00] 0.010 50 381 1.14
100 38 | 3.00) 0.022 40 202 0.69
122 50 [1.67] 0.015 36 117 0.33
TABLE 2

MEASURED DATA FOR BTR SILICONE

Rectangular Cyli

ndrical Specimen

m= 743 gm, A = 1.61 cm2(0.25 in?), A' =

7.23 em2(1.12 in?), h = 1.42 cm(0.56 in)

Temperature| |X,| | T sec| wy Hz | E 1b/in? n
°F °cC X2
=90 -68 | 1.40{ 0.003 le7 9580 0.214
-25 -32 [1.35] 0.005 1u0 3440 0.191
0 -18 [1.25] 0.006 83 2380 0.142
; 75 24 (1.49] 0.008 63 1354 0.254
y 150 66 [ 1.67| 0.010 50 876 0.326
240 116 {1.50] 0.012 42 602 0.258

4. DISCUSSION AND CONCLUSIONS

Crancall (3,4} has noted the
existence of analytical problems
arising from the complex modulus model
for transient oscillatory motions,
especially when the Fourier integrals
are evaluated numerically, and several
investigators have sought alternatives
to the complex modulus approach [5-7).
These discrepancies, while indicating
that we certainly have not yet achieved
. complete resolution of all aspects of
i linear damping material behavior, are
- not large numerically, and do not
- seriously affect the solution, equation
(14). As far as analyzing experi-
mental data to a modest degree of
accuracy is concerned, therefore, it is

of little consequence. Furthermore,
the contour integration solution seems
to be guite well bhehaved.

For sure, therefore, we have
described a very simple and effective
method for very quickly determining
the complex modulus properties of
samples cf soft damping materials, at
a single frequency. The specimens can
be changed quite readily by raising
the mass, putting the specimen in
place, and restoring the mass on the
Foam supports. Obviously, some further
improvement of the configuration can be
anticipated before extensive use of the
approach is made. The important thing
is that it is a simple method and
should not be looked upon as anything
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alse. If measurements are to be made
on stiff materials, shapes other than
cylindrical should be considered in
order to reduce the stiffness of the
specimen to an acceptable level. One
possibility is to make a vartically
oriented ring shaped specimen.

We have used this system to
evaluate the qualitative and quanti-
tative damping behavior of many
materials, ranging from suft foams to
stiff elastomers, and results have
generally been acceptable and readily
obtained. One point to remember at
all times is that the stiffness of the
specimen should always be much greater
than that of the foam supports, unless
of course one allows for that in the
calculations by subtracting the support
stiffness from the total stiffness to
determine the specimen stiffness.
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NOMENCLATURE

A Cross-sectional area of
specimen

A' Free-surface area of specimen

E Young's modulus of specimen
material

£ Frequency (Hz)

F Yorce

h Height of specimen

i /=1

k Stiffness of specimen

m Mass

Ry ,Ry Residues

s Load

] Fourier transform of load

t Time

T Time between successive zero
crossings

3 Displacement

® Fourier transform of displacement

Xo,X); Amplitudes at successive maxima

O Shift factor

8 Non-dimensional factor

n Loss factor

o Frequency (rad/sec)

Wy Real part of complex frequency

wy Imaginary part of complex fre-
quency

up Resonant freguency
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THE EFFECTS OF FREQUENCY, AMPLITUDE, AND LOAD ON
THE DYNAMIC PROPERTIES OF ELASTOMERS

John E. Cole, III
Cambridge Acoustical hssociates, Inc.
1033 Massachusetts Avenue
Cambridge, Massachusetts 02138

The dyramic-mechanical properties of elastomers are known to
depend upon the nature of the loading of the material, While many
aspacts of the dependence of the dynamic¢ properties on frequency and
temperature are well known and customarily accounted for, thege
propexrties are also known to vary significantly with other aspects
of the loading such as strain amplitude and static load. Purthermore,
not all of these aspects of the loading act independently. To a fair
degree of approximation the effects of frequency and strain amplituda
are separable. The effectr of hydrostatic loading are weakly coupled

with frequency. The implications of these results on designs using
elastomers is discugsed,

INTRODUCTION

periodic load and measuring the resulting defor-

mation., In such a test, the material may be

Many types of natural and synthetic rubber loaded dynamically in either shear, tension, o

compounds, generally referred to as elastomers,
find wide use in anti~vibration mounts. These
materials have a microscopic structure con-
sisting of small molecular units arranged into
long-chain molecules, The basic atructure of
an clastomer is often altered by the addition
of "fillers" such as carbon black particles
which are known to strengthen the material by
inhibiting relative molecular movement [(1l].
When an external load is applied, such as in a
stress~relaxation test, these polymer chains

undergo various types of mechanical daformation.

The deformation processes of these polymer
chains each require time to take place; con=
sequently a time-dependent response of the
material to an applied load is obse:;ved, 1In
fact, the response of a particular elastomer
material is Known to depend on several aspects
of the loading, as well ag on the temperature
of the material.

The behavior of the mechanical properties
of elastomers under conditions of dynamic
loading (i.e., when the applied load varies
with time) is of particular interest for the
design of anti~vibration mounts. There dynamic
properties may be determined as a function of
frequency in a vibration test by applying a

compression. The dynamic properties correspond-
ing to small applied loads may also be deter-
mined from acoustic measurements of sound speed
and attenuation ([2]. For either type of test
there is found to be a phaer difference between
the response of the elastomer and the applied
dynamic load. This viscoelastic behavior is
degcribed by considering the modulus of the
material to be a complex quantity. For example,
the dynamic Young's modulus may be written

* [ "
E =E +iE ,

where the single and double primed components
describe the relationship of the applied stress,
respectively, to the in-phase and the cut-of-
phase strain. The ratio of the imaginary to
real parts of the dynamic modulus (e.qg., E /E)
is referred to as the loss or damping factor

(nE or tan&E). The reciprocal of the dynamic

modulus is defined 1g the compliance, For

instarce, the shear compliance is related to
the shear modulus (G") as follow:

* * ' "
Jg 216 =J -4

and therefore

*
The work presented here was supported by the Office of Naval Research, Structural Mechanlcs Program,

under Contract NOOGl4~-69-C-0056.
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The dependence of the dynamic properties
of visgurlastic materials on temperature and
frequency (or time) ls well known under cond-
lrions of no static deformation and small strain
amplitudes [4). The empirical relationship
between temperature and frequoncy effects may be
obtained from cxperimental data using tho method
of reduced variables [4]. In this manner data
giving the dependence of a dynamic property on
tempurature may be "“transformed" to give the
dependence on frequency, and vice versa, Since
the temperature=-froguency "equivalence" of the
dynamic propertios of simple clastomers is
discussed in detail in standard texts (sce for
example (4], [29) and [30]}), it will not be
claborated upon heres, Only the frequency
dependence will be reviewed. It should be noted
however, that in terms of temperature depend-
ence, a desligner of anti-vibration mounts is
often interested in the "rubbery" temperature
region of the material (i.v., well above the
"glass transition" temperature). In this reygion
the dynamic¢ properties typically vary slowly
with both temperature and frequency.

Under conditions of small strain, the
dynamic properties of elastomers are found to
be independent of strain amplitude. This is the
regime of linear viscoelasticity within which
the dependence of the dynamic properties on
frequency is related to the dependence on time
via an integral transform (either Fourier or
Laplace). That is, the behavior of the dynamic
property obtained at long time from a relaxation
tegt corresponds with the behavior during a
dynamic test at low frequency. Within the
confines of lincar viscoelastic behavior, eithex
a relaxation test or a dynamic test provides the
same information on the variation of the dynamic
property with cither frequency or time [5].
Furthermore, the properties obtained from either
a dynamic tension or shear test are simply re-
lated. In particular, many clastomeric mater-
ials are nearly incompressible having a
Poisson's ratio of 0.5. For such materials [3]

E = 3G,
and

SE = 6G .

In addition to frequency and temperature
variations, elastomer compounds used in anti-
vibration mounts may be subject to large strain
amplitudes and to significant static loads. It
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is therefore of interest to explore the varia-
tion of thu dynamic propurties of an clastomer
with thres ¢f the parameters that, ape important
to the dusign of an antl-vipration mount,
namely, troquency, dynamice strain amplitude,
and static load. It has boen suggasted that
the c¢ffects of freqguency, straln amplitude, and
astatic load on the dynamic propertles of wlasc=
omers are suparable (6], in particular, that
the dynamic Young's modulus may be written:

wherse Af is a function uf frequency (f) only,
A s a

“a
(cd), AE is a function of static load (0), and

function of dynamic straln amplitude

E; is the dynamir modulus measured under cond-
iticns of small strain amplitude (e, < 1074
at a given frequency and at zero static load.
If this separation were possible, the task of
the designer in choosing the material proper-
ties for an acceptable anti-vibration mount
would be greatly simplified. Based upon the
data that exist, however, it does not appear
that a complete separation of effects is
reasonable. In the following sections the
variation of the dynamic properties with each
of these effects and their interaction is
discussed., Thig discussion is In the form of
a survey of related literature rathexr than of
a detailed study.

VARIATION OF DYNAMIC PROPERTIES INDEPENDENTLY
WITH FREQUENCY, STRAIN AMPLITUDE, AND STATIC
LOAD

Variation with Frequency

The dependence of the dynamic modulus oh
frequency is reasonably well known for a
variety of elastomer compounds under conditions
of no static load. As an example, the shear
modulus and damping factor at small strain
amplitudes for a filled natural rubber iz shown
in Fig, 1 [3). For a specified temperature the
shear modulus ls scen to exhibit a monotone
increase with frequency above a certain "ecrit-
ical frequency," which is charactexristic of the
particular elastomer. The damping factor
increases rapidly and is found to peak in the
region of maximum increase in shear modulus.

The fact that the dynamlc modulus is an
increasing function of frequency is a direct
consequence of the temporal behavior of visco-
elastic materials observed during either a
creep test or a stress-relaxation test. From
either test of a viscoelastic material, the
modulus is found to be a monotone decreasing
function of time, This behavior reflects the
molecular relaxation processes, each being
characterized by its own relaxation time. The
frequency dependence of the dynamic properties
is formally given by an integral transform of
this observed time dependence [5). The behaviox
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at low frugquency therefore corresponds with tho
long=tlme bahavior, tho long period providing
sufficlent time for yubstantial rulaxation to
oceur, Simllarly, the high-frequency and tho
short-time bohavior corre-vond with cach other.

The vffeut of varyiny froquency at higher
values of atraln amplitude for a filled natural
rubber is shown in Flg. 2, The difference from
one frequency to another of both shear modulus
and loss factur ls suwen to be about the same
for all values of strain amplitude, More will
be sald about thu impllcations of thls obser-
vation later,

Variation with Strain Amplitude

The dependence of the dynamic modulus of
elastomers on strain amplitude has been exam-
ined by meveral investigators [7-15]. Several
types of tests héve been used to explore this
dependence wlth the same basic results., The
dynami¢ shear meodulus and the phase angle
(i.e., SG) measured by Payne [11,12] at a

frequency of 0.1 Hertz for a carbon-black
£illed butyl rubber is shown in Fig. 3. The
paramcter of each curve is the awount of flller
present. For compounds with little filler
content there is little change of ecither
modulus or phase angle with strain. For larger
filler content, however, the dynamic modulus
decreasas dramatically with lncrceasing strain
amplitude. Correspondingly, the phase angle is
found to peak in the region where the meodulus
is decreasing most rapidly.

while for a particular elastomer and temp-
erature the sensitivity to strain amplitude is
a function of the amount of filler present, the
detalled variation of the dynamic propertics of
a particulay filler varies with the type and
compusition of the clastomer and with the
average size, 7hape and chemical properties of
the dispersed filler particles [16,17,18].

Two conclusions are drawn from these and
similar data. First, there is little depend-
ence of the modulus and loss factor on strain
for small values of strain amplitude (i.e.,

less than 10_4). This is the region of lincar
viscoelastic behavior. Secondly, the sensitiv-
ity of the dynamic properties of elastomer com-
pounds to strain ampljitude lncreases with the
filler content. The dynamic properties of some
unfilled elastomers that exhibit little depend-
ence on strain amplitude at room temperatures
have been observed to exhibit some strain
dependence at lower temperatures [19].

One mechanism has been discussed to des-
cribe the sensitivity of the dynamic propertiua
of filled elastomers to strain amplitude. The
fillers that produce this sensitivity are forms
of carbon black [11], certain silicas [11] and
salts [l0] existing as particles or chains of
particles embedded in the elastomer matrix.
There are interaction forces of eithar chemical
or surface-active origin which bond the

particles to Lhe cvlastomer matrix under equil-
ibrium conditions. PPaynu {12] refers to this
sltuation as a "wetting" ot the particles by
the matrix, Since for the materials under
discussion the uwlautic modull of the filler
materiuals are much greater than the equil~
lbrium (or zero frequuncy) modulus of the
elastomer matrix, the effect of filling is to
enhanve the modulug by increasing the ronlst-
ance to deformation, Wwhen such a £illed clas-
tomur iy strained in a periodic manner at low
amplitude, the enhanced equilibrium modulus is
ohserved (sce Fig. 3). At larger values of
strain amplitude, a process of "dewetting" is
thought to occur. Owing to the large strain
amplitudes, the filler particles "usupurate”
gomewhat fromthe celastomer matrix. This
process results in a loss in the magnitude of
the dynamic modulus and an lncreased loss
factor. A simple theorctical model of this
effect has been proposed by Freudenthal [17].
This mechanism however, does not account for
the observed strain depondence of unfilled
clastomers at low temperature {19).

vVariation with Compressive Static Loading

There has been a conslderable interest in
evaluating the effect of static load on the
dynamic properties of polymeric compounds. A
variety of loading conditions and experimental
methods have been employed [2,15,20-25];
hnwover, the concern of this discussion is
those studies using compressive static loadings
(i.e., hydrostatic ov uniaxial).

The cffect of hydrgstatic pressure on the
bulk compressibility (B") of rubber=sulfur
vulcanizate over a frequency range of 50 to
1000 Hz has been investigated by McKinney, ct
al. [25]. The real and imaginary parts of the
bulk compressibility at 1000 Hz as a function
of temperature are shown in Fig. 4 for gauge

pressurecs from 0 to 9.81 x 107 Pascals. For a
given temperature, the recal part of the compli-
ance is a monotone decreasing function of pres-
sure. The imaginary part of the compressibile
ity shows even greater sensitivity to pressure
in the temperature range of -10° to 10° C. For
low temperatures there is a monotone decrease
of B with increasing pressurc, At higher tem=
peratures, this is no longer the case. The
data of Fig. 4 can be used to calculate the
bulk modulus and loss factor as functions of
pressure for several temperatures. The modulus

(i.e., (l/B')coszﬁa) is found to increase

slightly with pressurce while the behavior of
the loss factor depends strongly on temperature.
The results of an acoustic transmission test on
“rubber~like" resins under hydrostatic pressure
are discussed by Boiko [2]. In the ranges of
frequency and pressure Erom 10 to 100 kHz and

0 to 1,5 x 107 Pascals, both the real and
imaginary parts of the elastic modulus are
ohserved to increase with pressure.
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The dynamic Young's modulus obtained using
a vibration test by de Mey and van Amerongen
[15]) for cylindrical samples of an unfilled
natural rubber compound under uniaxial compras-
alon iu shown in Fig, 5, The modulus is shown
as a function of static compressive straln for
different values of the shape factor (D°/4h°)

where D0 1s the cylinder dJdiameter and ho the

hedlght. The modulus is obtained for fregquen-
cles of 30-35 llortz and & dynamlic strain ampli-

tude of 5 x 1073, These data show the modulus
increasing with statlc load.

Thase data provide an indication of the
dupendence of the dynamic propertlies of elasto-
mers on compregsive static load. A mechanism
for explaining such a dependence for materials
subjevted to volume compression has been dis=-
cussed by Ferry [4]. This mechanism uses the
concept of the “free volume" of a material
that iy prasent iln the foril of voids on either
a molecular or macromolecular scala, When a
material is loaded compressively, there is a
tendency to decrease its free volume, thereby
inhibiting molecular motiong. Such a process
results in a decrease in the compressibility of
the material (and hence an increase in the
modulus), The effect of decreasing the free
volume of a material is more directly observed
under hydrostatic loading. As suggested in [2],
it would be uxpected that this mechanism would
only manifest ltself for very large nuniaxial
loadings which decrease the macroscopic volume
(and hence decrease Poisgon's ratio) of the
material.

INTERDEPENDENCE OF THE EFFECTS ON THE DYNAMIC
PROPERTIES OF FREQUENCY STRAIN AMPLITUDE AND
STATIC LOAD

Dependence of the Effects of Frequency and
Strain Amplitude

The discussicn thus far has shown that the
dynamic properties of elastomer compounds are
observed to vary significantly as changes are
made to vither one of the three factors;
frequency, dynamic strain amplitude, and static
loading. In addition, twechanisms thought to
give rise to these variatinns have been briefly
described. A complete de “vription of the
depondence of the dynamic properties of any
elastomer material on these factors requires
that all three be allowed to vary independently,.
Such an experimental program for any material
is not easy to fulfill. There do exist however,
results of experimental programs in which two
of the three factors have been varied. By
"plecing" these results together, some insight
into the dependence on all three factorsg can be
obtained.

fhe relationship between the effaects of
frequency (or time) and dynamic strain ampli-
tude on the dynamic properties has been dis-
cussed for a variety of elastomer compounds by
Freudenthal [16], Smith [8], Landel and
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Stadry (9), and Warnaka and Miller [)9). ‘he
conclugsions drawn in [H], [9], and [16] is that
to a fair degree of approximation the effects
of dynamic strain amplitude and frequency (or
time) are gaparable (i.e., act independently).
This conclusion has alsc been drawn by Vashchuk
and Roain [6].

The independence of theae two effects is
consistent with the "dewetting" mechanism used
to describe the strain amplltude dependence of
filled alastomers. It would bhe expected that
to a first approximation this mechanism would
occur at any frequency. The primary cause of
the "dewetting” is the relative motion batween
filler particles and clastomer matrix:; hence,
frequency cffects would not be axpected to be
dominant.

Since the effects of freguency and dynamic
strain amplitude are approximately scparable,
the dependence of any dynamic property (H*) on
frequency (f), strain amplitude (Ed), and statlc

static load (o) may be expressed

* * *
H (fltd'c) = Hf(fpo) th(cd'c) .

It remaing to examine the dependence of the
dynamic propoartles on statie load and frequency
effects and on static load and strain amplitude
effects.

Relationship of the Effects of Freguency and
Static Loagd

The dependence of frequency and hydrostatic
pressure effects has been discuswed by Ferry [4)
and Marvin and McKinney [26) in terms of the
free-volume concept. This concept can be used
to explain the dependence of the relaxation
times, which characterize the material behavior,
on the pressure., When there is a relatively
large free volume in the material (for
axample, at high temperatures), reorientation
of molecular chains owing to deformation can be
achieved relatively easgily with correspondingly
short relaxation times. The effect of a hydro-
static load is to decrease the free volume of
the material. This means that the molecular
reorientation takes longer to achieve owing teo
an increase “"viscosity" or resistance to
molecular motion. Hence, relaxation times are
increased with hydrostatic pressure. In
ganeral, the effect of any static load that
alters the free volume of the material also
changes the relaxation times.

Experimental investigations into the
effects of hydrostatic pressure on dynamic
properties have been made among others by
McKinney, et al, [25) and Bartenev and
Kuznetsova [20). The effect of increased
hydroatatic pressure is to reduce the free
volume of an elastomer in the same way as that
produced by a reduction in temperature. Based
cn such reasoning the method of reduced vari-
ables is extended by McKinney et al. to include




the affouts of prossure as well as frequency
and temperatura{25], A reasonable collapse of
tha data uf Fig., 4 is obtained in [25] with
this extantion, These results have been used
to obtain the variation of the bulk compres-
slbility with frequency at 0° C for several
pressures shown in Fig. 6. The frequency
dupeondonce 1s nhot significantly altered for
hydrostatic pressure less than approximately

107 Pascals (1500 Psi). Thuere do not appear to
ba low frequancy studles of the effaect of
froequoncy and unlaxial compreassive stress on
the dynamic properties of elastomers,

Dependence on the Effocts of Dynamic Strain
Amplitude and Static load

This dependence does not appear to have
bean the source of significant study to date.
In fact, onc can only offer speculation based
on the preceding discussions. If the "de-
wetting" process described in [16] is the
dominant mechaniam of the strailn dependence of
£filled clastomers, it would be reasonable to
assune that this strain dependence wnuld depend
upon the static loading. The effect of hydro-
gtatic pressure, for instance, would be
expected to delay the process to larger strain
amplitudes by retarding the filler-matrix de-
watting. BSuch reasoning, however, must remain
purely speculative awalting expeorimental
evaluation.

INFLUENCE OF THE DYNAMIC PROPERTIES OF ELASTO-
MERS ON THE PERFORMANCE OF ANTI=-VIBRATION
MOUNTS

The frequency varlation of the storage
modulus of elastomers indicated in Fig. 1,
results in a stiffening of an anti-vibration
mount with frequency. In the region of
increase in modulus, the transmissibility of an
anti-vibration mount increases. Several calcu~
lations have been made by Snowdon [3] that
display this effect for models of simple mounts.
When the storage modulus is constant for all
frequencies of interest, the transmissibility
decreases at a rate of 12 dB per octave above
the natural frequency of the "mount". This
rate is reduced when the storage modulus of the
elastomer increases in the frequency range of
interest. As expected the maximum value of
transmissibility decreases as the damping
factor of the respective material increases.

For a more general approach to estimating
the effects of the stiffness and damping of a
mount on the mount effectiveness (EM), refer-

ence ig made to the result of Sykes [27]:

where Yi is the mobility (i.e., reciprocal

impedance) of the mount, and YF' YM are the

respective mobilities of the foundation and
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machine, An increase in mount stiffness there-
fore in general reduces the mount cffectivenuss.

The strxaln dependent behavior of filled
elastomers might be axpected to be important
hear a resonance of an anti-vibration mount.
since the storage modulus (i.e., stiffnass)
decxeases and the damping factor increases with
increasing strain amplitude, the resonant res-
ponso is diminished. Another effect of the
gtiffness 15 to decrease the "natural"
frequency of the vibrating system. It is
difficult to quantify the effects of strain
pensitivity further since the differential
equation that governs the forced motion of a
aimple vibratory system with strain dependent
atiffness is nonlinear, Many aspects of the
genceral nature of the rasponse of simple
systemy with non-linear "springs" is discussed
by Stoker (28]. Asp expected the maximum
respongse of a single-degrea-of-freedum vibra-
tion gystem with a soft spring (i.e., one
whose gtiffress decreases with extension) and
with constant damping is shifted to lower
frequencies. In addition the response displays
a "jump"” in traversing the frequency range (see
[28]) for a more detalled discussion).

For elastomers in static compression, the
existing data at low frequencies (see Figs. 5
and 6) indicate a slight stiffening with
increasing static loading, No single trend is
indicated for the damping factor. The
increased stiffening tends to increase the
transmigsibility of a mount.

The separability of frequency and stralin
amplitude effects on the dynamic properties of
elastomers permits these two effects to be
estimated independently. The effects on the
dynamic properties of frequency and hydrostatic
pressure however, are not separable. With the
exception of large static pressures (e.g., ¢«

greater than lo7 Pascals), there does not
appear to be a significant coupling of these
effects (see Fig. 6}, There is little infor-
mation available to establish similar guide-
lines in the case of uniaxial compression. In
addition, the dependence of the effects of
dynamlic strain amplituds and static load
appears to require further investigation.

SUMMARY OF CONCLUSIONS

In summary the major conclusions of this
study are the following:

1. fThe dynamic properties of elastomers
can vary with frequency (and temper-
ature) as well as with compressive
static load.

2., The dynamic properties of certain
filled elastomers exhibit a strong
dependence on strain amplituade.

3. fThe effects of freguency and strain
amplitude act independently.
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4. There appears to be a weak dependence
of tho effacts of frequency and hydrou-~
static (compressnional) loads.

5, fThere is little information available
concerning the combined effects of
gtrain amplitude and static compres-
sion load.

6. The stiffness of elastomers tends to
increase with frequency (decreasa with
temperature), decrease with dynamic
gtrain amplitude (for strain-sensitive
filled elastomers), and increase with
hydrostatic load.
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LIQUID SPRING SHOCK ISOLATOR MODELING
BY SYSTEM IDENTIFICATION
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Champaign, Illinois
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1. INTRODUCTION
Background

Liquid springs can be designed for near optimal per-
formance. However, there is limited documentation by
manufacturers relating isolator mathematical models to
herdware design parameters. Hence, the liquid spring design
methods have yet (0 reach the state of the art whereby
optimum elastic and damping qualities can be specified and
subsequently transformed into predictable hardware per-
formance. Furthermore, in practice it is found that pneu.
matle or liquid-tilled isvlators require continuous niainte.
nance, and the conceived optimum performance is subject
to degradation between servicing operations.

It open-paramuter mathematical models of isolators
with common design features were available, the model
parameters could be optimized directly for the expected
environmental and Isolation system physical properties.

To this end, a feasibility study was undertaken to determine
if a reasonably accurate model of an off-the-shelf liquid.
spring isolator could be found, using data from a few simple
and inexpensive tests. A liquid spring was selected for its
design versatility and potential use in high-performance
shock isolation systems. General acceptance of a system
identification approach ultimately will depend on the
simplicity and cost of testing and the ability to represent
installed uperating conditions by the mathematical formula-
tion.

Purpose

The purpose of this report is to present the results of a
study to determine the feasibility of establishing mathemati.
cal models of high-performance liquid-spring shock isolators
[rom performance test data.

Approach

Severzl general nonlinear formulations were attempted
when modeling the isolator. The ivolator's model was
included in an overal! model of the test configura ion. Terms
representing the test configuration could be changed as
required to mode] cny suitable confipuration. For example,
the manufacturer’s test entalled droppinz a weight from

various heights onto a plate supported by the Isolator.
However, for this study, a hydraulic shaketable was used
whereby the lsclator formed the spring and damping ele-
ments of a simple horizontal oacillator. Generally, the test
configuration must be able to provide the sume range of
motion variables (displacement, veloeity, and acceleration)
to the isolator as expected under actual field conditions,

For the horizontal oscillator contiguration, three tests
were performed, using approximated displacement box func-
tions. Two of these tests were similar and provided con-
fidence in repeatability and consistency, The third test, which
was performed at an elevated fluid temperature, provided
information regarding the variability of the optimized
coefficients,

2. EQUIPMENT AND TLST CONFIGURATION
Selection of the Isalator

Isolator performance can be defined in terms of
dissipated energy—that is, force-displacement relationships.
For example, equipment fragility dictates that to insure
functional survival, Imposed accelerations must be limited,
thus zontrolling the maximum force transmitted to the
aquipment through the isolator. Either overall or internal
displacements can impair functional survival, so buth types of
displacement must be constrained. The dotted horizontal and
vertical lines in Fig. 1 indicate the performance of an ideal
isolator: one that dissipates as much energy as possible.

DEAL ISOLATOR PERFORMANCE

ACTUAL ISOLATOR PERFORMANCE
Foo—=}--

\\

) DISSIPATED ENERGY

FORCE

RESIOVAL ENERGY
RETURNED TO THE
SYSTEM

)
xm

DISPLACEMENT

Fig. 1 — Force-dlsplacement relationship for
high performance isolators
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The tluid compressibility and viscosity, and the me-
chanlcal and fluid friction determine the response of liquid-
spring lsolators, Compression of th- sllicone fluid with a
variable diameter piston rod provides the spring effect
(Fig. 2a); fluid flow around the piston provides the major
source of damping (Fig, 2b), The spring effect, as fllustrated,
acts only for rod motion from lett to right. The actual liquid
spring used was double-acting, giving a spring effect in both
directions.

FLUID-\

g

ROD MOTION

ROD MOTION

FLUID FLOW

b. DAMPING EFFECT

Fig. 2 — Characteristics of a liquid-spring
shock igolator

A liquid-spring shock isolator was used in a simple test
to provide data for optimizing the coefficlents of the mathe.
matical model. The isulator met performance specifications
requiring a spring rate of 70 051 N/m (400 Ib/in.), an
effective linear viscous damping ratio of 0.3, and a 0.305.m
(12-in.) stroke, Stutle tests by the manufacturer indicated
a spring rate of 55 165 N/m (315 Ib/in.) for small displace-
ments and 95 619 N/m (546 1b/in,) at full stroke (Fig. 3).
Section 3 further discusses the hardening property of this
static spring rate.

10000 |-

8000 }—

FRICTION FORCE
2 000} 0EAD BAND
< ($TATIC)
[}
v
3
o
w4000}
K188 168 N
(318 1ba/18)
2000 [—
1 i i j -
2 4 [} 8 1o 12 L]

/-FLUID VOLUME REDUC TION

DISPLACEMENT (cm)

Fig. 3 — Static spring-rate curve for
the test isolator
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The manufacturer's tests Indicated an equivalent
viscous damping coetficient of 0,28 to 0.43, varying with
velueity, Thus, damping was expected Lo be nonlineur.

The manufacturer suggested that the dynamic spring
rute and damping cuefficient would exhibit softening (see
Sectlon 3), even though static tests showed hardening. This
statement simply impliey, however, that the dynamic prop-
erties were generully different from those the manufacturer
hud equipment to measure,

Test Configuration

The least-squares system-identification technique
requires measured input motion (base displacement),
measured oulput response (mass displacement), and an open-
parameter differential equation as a trial mathematical model
of the isolator.

The test configuration, shown in Fig. 4, provides the
maximum relutive displacement and velocity using available
test fixtures. One end of the liquid spring was attached to a
tigid base mounted on the CERL Blaxia! Shock Test Machine
(BSTM) test platform and the uther end was attached to a
2722-kg (6000-1b) mass. Rollers supported the mass and
allowed il to mova only in the horizontal plane. Rolling
friction was not significant. Base displucement was applied
to the isolator through the rigid base mounted on the test
pletform.

“prezke’ .
< {6,000 b} ) R
t- *l_ Reaction Muss 17 7}

Dead End
Broce

Plattorm . \\ -7

~ ~ - -

Fig. 4 — Test carriage on liquid-spring mounting frame

Six uniaxial electrohydraulic actuators, with a total
capacity of 2 001 700 N (460,000 1b) provided the
horizontal motion. The actuators drive the 3.658.m square
(12-ft square) all-welded aluminum test platform. A
pressurized hydraulic fluid provided the excitation energy,
and a 0.0208 m3/s (830.gpm) sersovalve on 2ach actuator
controlled it.

Optical-electronic equipment provided the excitation
and mass response displacement data, Differentiating the
displacement data ylelded the velocity and acceleration.
All data were recorded on analog tape, then digitized and
Jiltered for reduction,
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Base Excitation Motions

A sotries of preliminary sinusoidal tests to determine
adequate mass response showed a gradual increase in relative
response amplitude, caused by a rapid rise in isolator fluid
temperature and a decrease in (luld viscosity, These results
caused the steady-state testing to be abandoned,

Three transiont tests, labeled runs A, B, and C, wete
then performed. Figure 5 shows the platform displacement
for these runs, Run A input motion was an initial step to
0.140 m (5.50 in.) displacement with a rise time of 0,20
sec. This displacement was held for approximately 2.00 sec,
followed by a return to the original platform position in
0.12 sec. Platform displacement tor run B was opposite in
direction but equal in size and duration to run A. Run C had
an Initial rise to 0.140 m (6.5 in.) displacement in .12 sec,
tfollowed by an immediate return to the original position
in 0,12 sec,

3. FORMULATION OF THE MATHEMATICAL MODEL
Physical and Mathematical Properties

Liquid springs behave lie automotive shock absorbevs.
Figure 8a. shows a simplified, single-acting liquid spring.
Motion of the rod to the right will cause a spring effect by
fluld compression, and a damping effect by flow of fluid
through or around the orifice head. This isolator can (1)
dissipute enuigy efficiently by fluid damping, and (2) return
to original length after distortion, The latter property causes
some loss of efficiency from energy dissipation, but fvis a
practical necessity, This energy is conserved and is shown
as the hatched area in Fig. 1.

Figure 6b shows a free-body model of the isolator. F(t)
represents the action and reaction forces applied externally

to the isalstor. The internal force causing the comprossed
isolator to return to its originel position is shown us a spring,
and is depicted mathematically as t, (2). The internal force
causing damping is shown as a dushpot, and is deplicted math-
ematically as f5(%). The mathematical model for Lhe general
teat configuration is:

F(l) + 1,(2) + [,(3) = 0 (Eq. 1)

Either the rpring or the fluid dampling can exhibit hard.
ening or softening propertles, as illustrated in Fig. 7[1,2],
Hardening occurs when the internal force Increases more
rapidly than the displacement or velocity. Softening ovcurs
when the internal force increases less rapidly than the dis-
placement or velocity. By requiring both fy(z) und f,(2) to
soften as in Fig. 1, one can cause energy to be dissipated
efficiently, Optimizing the precise shape of the softening
curves for each of these functions and for each isolation
system allows one to maximize the energy dissipation
efficiency.

Several practical design features such as displacement
d~ad space, fluld preloading, and static friction, can
influence the shape of the curves for f,(z) and f,(z).
Displacement dead space results from little or no resistance
to motion in the vicinity of 2 = 0, and is not directly
associated with the frictional dead space shown in Fig, 3.
Under dynamic operating conditions, frictional dead space
will appear us a constant friction damping term in fy(2).

An air bubble or void in the fluid chamber can cause a dead
space in displacement. Preloading a liquid spring can slightly
modify the shapes of f,(z) and £5(z) in addition to modify-
ing the spring’s response at small displacement velocities.
However, preloading is impossible if there is a void in the
fluid chamber, and static friction will create a minimum
applied force before the relative motion of the isolator starts,
The mathematical aspects of these features will be discussed
below.
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Fig. 7 — Hardening and softening properties

General Formulation of the Model

Figure 8 shows a simplitied model of the test configura-
tion. The coordinate, x, is the absolute displacement of the
mass, m: absolute table displacement, u, causes the forces
applied to the mass. The relative displacement between the
mass and the table is z = x = u. Likewise, the relative velocity
is 2 = £ - U, where the superimposed dot means differentia-
tion with respect to time.

RIGID
BASE

(D) ().
o

fa (h, EFFECTIVE DAMPER

_ BSTM 3EST
PLATHORM

Fig, 8 — Simplified test configuration

The spring and damper effects represent the isolator’s
behavior. Spring forces that restore the mass to equilibrium
are represented by f;(z), which is a nonlinear function of 2.
Forces that dissipate energy are represented by f,(2), which
Is a nonlinear function of z. The forces applied to the
Isolator, which constitute the F(t) term in Eq. (1), are caused
by the table motion and the Inertils of the mass,

Identification of Applied Forces

For an oscillator with linear elasticity and dumping, the
mathematical model is [ 3]:

mz + kz + ez =-mil (Eq. 2)

where m Is the mass, and k und ¢ are constans, i.e., £,(2) = kz
and fg(i) = ¢z. Thus, ~mii appears on the right side as a
forcing function, The same form of the differential equation
is applicable when £, (z) and f4(2) are nonlinear, whereby:

mzZ + £ (2) + £,(2) = -mil. (Eq. 8)
Substituting X = z + i yields
m + £,(%) + £5(2) = 0. (Eq. 4)

Equation (4} is the general equation governing the test
configuration shown in Fig, 8. At rest laitial conditions were
assumed.

In passing, it is considered worthwhile to derive the
form of the governing equation which would be applicable
for a more versatile test configuration, A drop test, for
example, may enable one to achieve a broad range of motion
variables which cannot be achleved with the horlzontal
oscillator configuration discussed above. Figure 9 shows the
notation of such a test. A mass of weight, w, is dropped
vertically from a height, h, onto a flat supported by the
isolator, which acts in the vertical direction, Summing forces
at the mass yields the relation

mi + £ (2) + f5(2) = 0 (Eg. )
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where m = w/g. Note that F(t) trom Eq. (1) is now equal to
mz, instead of mx, as for the horizontal oscillator contigura-
tion. Also in this case, initial conditions are:

2(0)= 0
£(0) = /Zgh (Eq. 6)

Nonlinear Spring and Damping Etfects

‘The nonliriear terms f, (z) and £,(z) can be expressed to
any desired degree of accuracy by expanding orthogonal
functions. For example, for a sufficlently large number of
terms, N, the tollowing expansion can represent either a
hardening or softening spring:

N
fl(z) - I‘Elk“z“ (Eq. N

where n is an integer, and k,, is a constant. Accumulating
more than a few terms for either t, (z) or £5(z), however,
would result in awkward and time-consuming calculations.
Although in theory, short power-saries expansions can

model either softening or hardening, in practice, for soften-
ing, unstable solutions result when large motions are modeled

The hyperbolic tangent provides an appropriate repre.
sentation for softening [4): ,

£, () = kyz + k, tanh(ca). (Eq. 8)

A similar sxpression can represent damping, except that the
equation inclides a term for coulomb friction:

1,(2) = ¢, 2 + ¢, tanh(pz) + ¢, sgn(2). (Eq. 9)

In Eqs. (B) and (9) a and § are constants, while sgn(z) = £1,
according to the algebraic sign of z.

Discussions with the manufacturer indicated that
response results might retlect the effects of displacement
dead space and prelonding, These conditions affect the form
of elther fy(z) or f,(i) in the neighborhood of z = 0, Figure
10a shows the effect of dead space—no resistive force—for
z = 1§, Figure 10b shows the sffect of preloading—an instan.
taneous positive or negative force—for f,(z) = tyate=0, It
is concelvable (but not likely) that these two conditlons
could exist simultaneously, as shown in Figure 10¢, Dead
space is usually caused by a fluld vold or air bubble, while
preloading is effected when the fluid is injectad under
pressure. Hence, the two conditions might exist If an alr
bubble was trapped under pressure within the casing, The
computer model was adjusted to account for this effect.

Final Model and Supporting Rationale

All the mathematical forms mentioned in the previous
subsection were tried. The least-squares method of system
identification was used to find optimum values of ky, kg, ¢,,
cy and cg. These constants, which constitute the unknowns
in a set of simultaneous linear algebraic equations, are
optimized using the techniques described In Appendix A,
The constanta @, 8, v, 6, and ¢, which appear within the
nonlinear expressions of z and 2, were independent values
obtained from the experimental data, and were thus
optimized by trial and error. Because the least-squates
method ylelds an overall variance and a covariance ma-
trix (see Appendix A), the Greek constants could be
optimized quickly in several iterations by selecting values
which would minimize the variance while permitting good
conditioning of the covariance matrix. Good conditioning
of the covarlance matrix, in turn, implies that the form of
the mathematical model was appropriate, since the non-
linear terms would be relatively independent of each
other.

Analysis of the least-squares results yielded the follow-
ing observations about the form of the mathematical model
of the isolator:

1. Softening effects for both f, (z) and f;(z) were clear,
s0 hyperbolic tangents were used as in Egs. (8) and (9).

2. There appeared to be no constant friction force.
Inclusion of coulomb friction for all velocities invariably
increased the variance and decreased the conditioning of the
covariance matrix. This result does not imply that friction
was not present, but rather that it was most likely not
independent of velocity. If friction depended on velocity, it
would be accounted for in the hyperbolie tangent term of
f2(2). It was tinally declded to set cg = 0 to allow the tanh
(BZ) term to account for frictional effects other than static
friction.

3. The combination of displacement dead space, and
preloading (as shown in Fig. 10¢) applied to both the linear
and the hyperbolic tangent terms for £;(z), but only to the
hyperbolic tangent term for f4(2). In other words, linear
damping appeared active in the dead space, while the remain-
Ing terms provided no rosistance to motion. Furthermore,
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the value of v associated with preloading was found to be
negligible—a result veritied as likely by the manufacturer—tor
two reasons. First, the initial preloading fluid pressure pro-
vided by the manufacturer was relatively low. Second,
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because the lsolator had been operating for extanded periods
at high fluid temperatures, it had ieaked some fluld. In either
cane, & void in the fluid chamber could be expected.

‘The observations led to a definition of the best mathe-
matical model for the isolator in the form of Eq. (1) as

F(t) + kyx + ky tanh(az) + ¢, & + ¢y tanh{fz) = 0. (Eq, 10)
Equation (10) shows that

t(2) =k z+ k; tanh(ez) {Eq. 11)
1,(2) = ¢, 2 + ¢  tanh(pz), (Eq. 12)

The results of applying Eq. (10) to the phyaical model
for the test configuration (replacing F(t) with mX) are
presented in the following section. The actual table dis-
placement was used as the base mation excitation for both
models. Appendices A and B discusa technlques for treating
the special effects of dead space and static friction,

4. RESULTS
Average Parameter Values

The coefficient parameters ky, kg, ¢4, and ¢, (with
¢z = 0) in Eq. (10) were calculated and optimized by the
least-aquares method. Nonlinear parametars (those denoted
by low r-case Greek letters) could not be optimized in this
manner. Although it would have been desirable to optimize
the nonlinear parameters automatically, more programming
time would have been needed, so these parameters were
adjusted by trial and errar, using the overall variance and the
covariance matrix conditioning as indicators of improvement
(see Appendix A), Solutions were always highly stable (5]
in that small changes in constant parameters yielded small
changes in response.

Table 1 gives the optimized constants for all three tests;
averages are in the far right column of the table. The con-
stants for tests A and B appear to agree fairly closely,
although k, and cg for run C are sumewhat high. Table 1
allows comparison of the experimental response variables
of relative displacement and velocity and absolute mass
acceleration, with the corresponding theoretical values of
the same variables calculated using the average constants,
Such a comparison should demonstrate the stability of the
theoratical solution of the mathematical model.

The figures in Section 2 show the table motions, u(t),
for the three tests selected for analysis. Changes in the
viscous properties for run C are explainable, given the
senuitivity of liquid springs to changes in fluid temperature
[6]. Test C was run after about ten previous tests in close
succession, which raised the temperature of the fluid enough
to render the isolator casing warm to the touch,

Comparison of Model Solutions With
Experimental Data

A compatison of some preliminary model predictions
with experimental data demonstrates that the least-squares
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Table 1

Optimized Constants

Constant Run'A Ru;nB 7 fRﬁnC Average

k; N/m 76800 68000 68 100 70 900
ky N 643 686 1630 962

+

¢y N/m/s 6 440 7620 4010 6 020

N 1600 1300 4 050 2310
ey N 0 0 0 0

o 1/m 78.7 78.7 78.7 8.7
Bs/m 78.7 8.7 787 78.7
yN 0 0 0 0

Sem 1.96 1.96 1.96 1.96
ecm/s 1,52 1.52 1.52 1.52

technique can generate optimum constants for the mathe-
matical model, Figures 11a, b, and ¢ show the comparison of
the variables (relative displacement and veloclty and absolute
mass acceleration) for test A, using the optimum constants
generated for test A,

Agreement is sufficlently accurate in Figs. 11a, b, and ¢
to conclude that the mathematical model depicts the
behavior of the isolator for test A, The large oscillations in
the acceleration trace of the real data in Fig. 11c are attribut-
able to experimental nolse, since the measured displacement
trace is differentlated twice to obtain acceleration. The
pulse at point A in Fig, 11c Is the sudden actuation of the
tanh(fz) term (nonlinear damping) in Eq. (10) when motion
is somewhat mild and the relative displ nt has exceeded
the dead band. Only linear viscous forces have been observed
to be active in the dead band, where |z]| < 8. The model
would be more accurate if this pulse (point A) had occurred
slightly earlier, to match the real data at about point B in the
figure, Although no time was spent matching the slow
motion of the isolator near the dead band with any greater
accuracy, it should not be difficult to adjust the model
for better agreement. For high-performance shock isolation,
accurate prediction of terminal motion around the dead band
Is unnecessary.

In Table 1, the averoge values of the constants (the far
right column of values) are somewhat ditferent than the
optimum values found for test A, In particular, k, is 76
percent higher, and ¢, is 45 percent higher. As previously
discussed, the rather large changes in these constants are
attributable to the weighting effect of those values optimal
for test C for which the fluid temperature was elevated.
Figs. 12a, b, and ¢ show the effect of using the average
constants, using test A again for the comparison. The effect
is slightly less agreement than in the optimal plots for test A
(Figs. 11a, b, and c). Thus, the theoretical solutions are
stable,

The aigniticant conclusion trom Figs. 11 and 12 is that
the constant parameters do not have to be specitied precisoly
{0 order to obtain reasonably accurate predictions of
response-properties. This is a highly desirable result, since
minor design-tolerance differences between nominally identi.
cal isolators in practical spplications will cause the constants
tor optimal models to be slightly different. Therefore,
average values for these constants should predict respunse
propertiss that roasonably approximate sztital response prop-
ortios.

Figures 13a, b, and ¢ compare the response vuriables for
test B, using the average constants from Table 1. Figures 14a,
b, and ¢ show the same type of results for test C, again using
the average constants instead of the optimal constants for
that test.

Finally, Figs, 16 and 18 show the nonlinear spring and
damping curves calculated from Eqs. (11) and (12) for t,(z)
and fo(z), using the averaged constants from Table 1. These
tigures will be discussed in detail separately to interpret
the nonlinesr properties and their effects on the form of
Eq. (10).

The dynamic spring rate shown in Fig, 15 was found to
be almost linear (i.e., it had a slight softening property) for
values of |z| greater than the dead band. The softening
term k, tanh(oz) was retained (even though the spring rate
was nearly linear) because its presence yielded » smaller
errot variance than when (a) the linear term, k, z, alone was
used, and (b) the superposition of a constant term (for
example, kq, shown in Fig, 15) and a linear texm was used,
such as kg sgn(z) + k2. The value of ky was taken as the
extended intercept of the elastic line to the force axis, and
is analogous to a force which might be caused by preloading.
Howaver, It is not likely that preloading could exist if a
bubble were present in the fluid, as evidenced by the exist-
ence of the dead band. Instead, it is theorized that the ky
tanh(oz) term served to shift the linear curve ky z (shown by
line OA in Fig. 15) upward and almost parailel to it by a
force approximately equal to kq. In this case, large changes in
o caused very little change in error variance, because the
influence of « was almost eliminated by the existence of the
dead band. The value of = 78.7 m~1 (2.0in.”1) was
selected from trial and error more for convenience than as an
optimal value, since it could have ranged from 38.3 € a <
167.4 (1 < a < 4 in English unlts) without significantly
changing the error variance,

To some extent, the above comments are applicable in
a similar manner to the viscous damping curve shown in
Fig. 16. For example, this curve is nearly linear tor {z] >
25 em/a (10 in./sec). The value of § = 78.7 s/m (2.0 sec/in.)
is analogous to «, but in this case, the error variance was
somewhat more sensitive to changes in § because of the
requirement to fit the data in the velocity range below 2| =
25 em/s (10 in./sec). Again the hyperbolie tangent term
yielded a smaller error variance than the superposition of
a constant (¢, in the figure) and a linear term, such as ¢,
sgn(z) + ¢, 2. Here ¢,y sgn(z) is identitied as coulomb friction.
It is recalled that the inclusion of a coulomb friction term
with the linesr and hyperbolic terms, as given in Eq. (9),
yielded an increase in error variance. 'This was probably be-
cause the coulomb friction effect was largely accounted
for in the hyperbolic tangent term, except in the range
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10000k~ WITH 1) cz.-o FOR [z| £ QOI96m (0.77in}
2) ¢yt v £916N (20.61b) FOR
Ii] 5 0.0152m/s (06in/sec) AND
8000|- Izl £0.0196m (O.77in)
z
— './ B
—
2
o _ I | | _J
() 20 40 €0 80 100 120 140

_VELOCITY (em/sec)

Fig. 16 — Viscous damping force vs. velocity

below 12| ~ 51 cm/s (10 in./sec). Hence the two terms may
not have been sufticlently independent. Nevertheless, the
hyperbolic tangent term yielded the smallest error variance,
and was therefore retained.

These results were obtained from only three tests, one
of which was held with elevated fluid temperature. For the
purposes of this work, establishing mathematical models for
high-performance isolators from experimental data is
considered feasible.

6. CONCLUSIONS

The lack of reasonably accurate open-parameter mathe-
matical models of ¢ypical classes of isolators makes it

difficult to predict isolator performance. System-
identification methods can produce mathematical models
from experimental test data on individual isolators. The
least-squares method of system identification was used to
obtain a mathematical model of a liquid spring isolator,
which was selected because it provides near-optimum
performance for shock isolation,

Because preloading and dead-band properties atfected
peak response values, some time was devoted to modeling
these effects accurately enough to duplicate large motions.
The only significant forces opposing mation in the dead band
were linear viscosity and statie friction.

Equation 10 gives the open parsmeter mathematical
model developed for the isolator. Table 1 gives the optimum
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values of the parameters for each of the three tests, together
with average values,

Agrevment of the actual and computed responses (using
the optimized constants for each test separately) ranged from
vory good to excellent. The two similar tests yielded similar *
pavameters, with the largest single parameter difference being
approximately 26 percent. Using the optimized parameters
from one test to compute the response of the other caused
the agreement to deteriorate slightly. The test held at
elevated fluid temperature caused large changes in the
optimized constants, although average constants from all
three runs still yielded good agreement with the test results.

The major conclusion of the study wae that a reason.
ably accurate mathematical model of an isolator can be
found from u few simple tests, using system identitication
methods. Design features which aftect maintenance (such aa
fluid leakage) can also be modeled. Subatantial changes in
optimized constants yielded small changes in computed re-
sponse, indicating soma degree of insenaitlvity to production
hardware tolerances as well as mathematical stability of the
model. The practical application of system identification
methods in the design of shock isolation systems appears
plausible. This approach could replace the in-place testing of
entire isolation systems with simplified tests of single isola-
tors, and therefore should be signiticantly more economical.

APPENDIX A

LEAST-SQUARES SOLUTION FOR COEFFICIENT PARAMETERS

In Eq. (10), the Arabic parameters (k,, ko, cq, and ¢p)
may be treated as the unknown quantities to be optimized
using the least-squares method of system identification,
Although other methods migiit prove more profitable, the
least-squares method was basic and could be applied di-
rectly.

The constants denoted by lower-case Greek letters
{o and £) appear in nonlinear factors that form the known
coefficients (from experimental-response data) of the un.
known constants to be optimized. The Greek constants
modify the nonlinear form of the known values in the
matrix of equations to be solved, and therefore they
modify the form of the mathematical model. Thus the
Greek constants had to be adjusted by trial and error in
this work. The Arabic constants are the unknowns to be
calculated.

The derivation for optimizing the Arabic constants
by the least-squares method begins by rewriting Eq. (10) as

mi&l + z“k! =0,
(Eq. A1)
i=1,2,.1;j=1,2,..4

where standara summation notation is used. Subscript i
denntes the ith time step of the digitized experimental

data. while subscript j indicates the term in the equation
containing the j*b unknown constant. Total time stups I are
considered, with J total unknown constants to be optimized.
The j*h unknown constant is k;. In any test configuration
such as that described in Section 2, m denotes the mass to be
isolated, and i, is the acceleration of the mass with respect
to coordinates fixed in space (that is, absolute acceleration,
as opposed to acceleration relative to the table motion). The
values of x; (i = 1, 2,...1) come from measured displacement
data that have been differentiated twice, and that therefore
contain some experimental noise. The z values come from
the nonlinear products of relative displacement, 2, and
relative velocity, z. They also include the lower-case

Greek constants as modifying factors, so to know the 2y
values, one must know the Greek constants formed from
experimental data.
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For simplicity and clarity, let
Y, = mii, (Eq. A2)
and
g “‘ukj (Eq. A3)

In the least-squares method, minimizing the squared differ-
ence, ot errot, between y; and §; for all i yields the optimuin
values of the k. Therefore, let

2= & (v-4) (Eq. Ad)

where S is a constant. Setting the partial derivative of Eq.
(A4) with respect to each k; equal to zera minimizes S with
respect to each k; and produces a system of J simultaneous
linear algebraic equations of the form

s 1 ak
—_— - =0 Eq. AS
B, i:‘:l &) ok, (Eq. A5)
Substituting Eq. (A3) into Eq, (Ab) gives
1
(7)) = 0 (Eq. A8)
For matrix computational purposes, Eq. (A6) is rewritten as
1 [
‘_El zyzgh; = - ‘?1 ., (Eq. A7)

where z; is the transpose of zy. In matrix notation, Eq. (A7)
is

[2T )z k=~ (2T )y} (Eq. A8)
where [z} is aJ X I rectangular matrix and {27) is its trans-
pose. Then{k}is a J X 1 column matrix of the unknown
constants, and {y}is an I X 1 column matrix.

Now denoting

[A] ={z%}[2] (Eq. A9)
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as aJ X J matrix of known values from experimental data,
and

{bl= (27 )y} (Eq. A10)

asaJd X 1 column matrix of known values from the dats,
the final torm of the matrix equation to be solved is

{Al{k}={b} (Eq. A11)

Equation (A11) is a well-known problem in matrix
algebra. A suitable subroutine for solving Equation A1l
for the column of constants{k} can be found in programming
literature and need not be discussed here. Using such a sub-
routine, one can find the optimum Arabic constants for a
gi7en mathematical model of an solator.

The overall vaziance and the covariance matrix are
highly usetul tor analyzing goodness ot fit of s model to data.
The overall variance, 03, is obtained by averaging the mean
aquare error corrected for bias. The error, ¢, at sach time

step was used in Eq. (A4) and may be written in matrix
form as

feb={vi-{e} (Eq. A12)

where all three terms are I X 1 column matrices. Averaging

the squared errors for all | provides a binsed estimate of the
variance, 02:

52 - %<e>{ei (Eq. A13)

.ere <e>> is the transpose of ¢ , or a 1 X [ row matrix.
Keducing I by the number of unkaown constants, J, to be
estimated renders the variance unbiased (¢02):

ot = 1'-1? <e>fe) (Eq. Al4)

It N is much largor than J, the bissing influence will be
negligible,

The covariance matrix, [ V], is J X J and Indicates the
sccuracy and independence of the individual estimators
(the unknown constants to be optimized). This matrix is
calculated from the relation;

[A)V]=a¥{1] (Eq. A18)

where all matrices areJ X J, and [1) is unit disgonal, Here
[A], 02, and [I] are known quantities, and (V] is the

unknown matrix to be calculated. [ V] can be solved using
the same subroutine as used for obtaining{k }in Eq. (A11).

The numerical value of 02 and the conditioning of the
[ V] matrix were continuously monitored through the trial-
and-error procem of varying the form of the mathematical
model and the lower-case Greek constznts. As the model's
fit improves, the value of 02 decreases, and the principal
diagonal elements of [ V) grow significuntly larger than
the off-diagonal elements. These changes indicate good
conditioning and imply that the individual terms ~f the
equation are independent.

Accounting for displacements, dead-band, and static-
friction effects requires minor condition statements in the
computer program. Usually relative motion was assumed
(or forced) to be zero whenever iz| < § and |Z] < ¢, but
eliminating many of the points where the relative motion
was zero produced a better-fitting curve. For example, in
Fig. 14a, relative motion essentially ceased butween 1,50 sec
and 2,12 sec, If this portion of the test were include in the
least-squeres solution, a good fit in this region would be
obtained at the expense of less accurate fits of the more
signiticant portions of the curves. Since getting a good fit of
the data for no relative motion was trivial, the majority
of these points were eliminated.

Preloading was accounted for originally by adding the
term yagn(z) to Eq. (10). In this case, v was u constant
coefficient, so the least-squares analysis ought to optimize
it automatically. The relatively small influence of this term
in the [ A} matrix (for this particular isolator) caused poor
conditioning of the corresponding diagonal element in the
(V] matrix. Therefore, the value of ¥ « 0 was verified by trisl
and error instead.

APPENDIX B

TIME DOMAIN SOLUTION OF THE DIFFERENTIAL EQUATION

Comparison of the analytical and experimental results
made it necessary to superimpose the solution of the
optimized differential equation on the real data, as done in
Chapter 4. Since computef storage and speed of solution
were not serious problems, a fourth-order Runge-Kutta
algorithm [ 7] was used to solve the equation. This algorithm
was selected for its simplicity and cormmon usage.

In the least-squares solution for the optimized coefli-
clents, the response behavior in the dead-band and static
triction had to be accounted for by special programming.
Both of thess effects occut in regions of small relative dis-
placement and low relative velocity, so they should be of
trivial concern for high performance shock isolation systems

It became apparent, however, that distinct changes in the
peak values of the response variables might be directly asso-
cisted with chaages in dead-band and statie friction, The
solutions remained stable, in that small changes to the dead-
band or static friction parameters yielded small changes in
peak values of the response variables, Since anything that
affects the peak response values should interest designers of
isolation systems, the dead-band and static friction modificas.

tions were retained as special properties in the Runge-Kutta
solution.

In Eq. 10, both the linear and hyperbolic tangent terms
(k,, + ko tanhoz) for spring forces and the hyperbolic
tangent term (c, tanhfz) for damping forces were inactive in
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the dead band, where |2] < &, Hence linear viscoslty (cz) was
the only dynamic force that opposed motion in this band,

Static friction effects were treated difterently for
initial and terminal motion. Relative motion did not begin
until the magnitude of the force applied to the lsolator (in
this experiment, F(t) = mi wvas the applied force) excesded
a small static force of F(t) ~ 91.6 N (20.6 lb). For terminal
motion, v on || decreased to zero, the motion of the mass
was allowed to continue until |21 dropped below ¢ = 0,0152
m/s (0.8 in./sec). The static friction force in each case was
the same, ond the average value ot ¢, « 6023 N/m/s
(34.4 1b/in./sec) trom Table 1 was used,

Again, the only reason for considering dead-band and
static friction effects was because of their noticeable
influence on penk response motions, This siudy made no
sttempt to model the motion near the rest condition in the
cead band with high accuracy. The intent was to model
eftective conditions for thase pruperties that would yi¢id
conristent results and better accuracy for the peak valuvs,

The aveorage constants from Table 1 repeated below
reflected the modifications made to the solution
progicmming to account for displacement dead-band, static
triction, and preloading effacts.

70900 N/m
‘ : " (4051bwin) 12173
1
-0 for Iz < §
952 N
‘ {’ (24 lbg)  forlzl>d
2
=0 for [z]| < 6
6023 N/m/s .
1™ (34.4 lbs/in./ec) TOralzandz
2313 N
{- (620 1bs) for 2| > 6
2
-0 for |2/ K8

y = 0.0 N (preloadirg) (0.0 1b)

§ = 0.0196 m (0.77 in.) (displacement dead space)

z = 2 = 0foteyz<51.6 N (206 Ib) (initial motion)
or 2 < 0.0162 m/s (0.6 in./sec) (terminal
motion) (static friction)

SYMBOLS

Constant

Substitution column vector

Constants, subscripted, for damping coefficients
Ditterential symbol

MNonlinear tunstion, subscripted, for spring and danpirg
effects

Ao ok

Summatlon index for time

Summation index for unknown parameters
Constants, subscripted, for spring coefficients; also
used for general coefficients

Mass

Summation index for series oxpansion terms
Time

Table displacement (absolute)

Mass displacement (absolute)

Substitution variable

Relative displacement

Substitution matrix

Applied forces

Maximum number of digitized time points; also used
for unit diagonal matrix

Maximum number of unknown parameters
Maximum number of series exf:ansion Lerms
Constant

Transpose matrix symbol

Covariance matrix

Known variable matrix

—maNYXRETDy X

Ng=S©wzZ~

Known constants used in nonlinear factors

m o ™R

Substitution variable
Standard deviation (02 = variance)
Summation synibol
Partial derivative symbol
Rectangular matrix

} Column matrix

<> Row muatrix
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A GENERALIZED DERIVATIVE MODEL FOR AN ELASTOMER DAMPER

Ronald L. Bagley and Peter J. Torvik

Air Force Instituce of Technology
Wright~Patterson AFB, Ohio

A generalized derivative (fractional order) is used to construct a dynamic
stress-strain constitutive relation for the elastomer 3M-467. The desira-
ble features of this constitutive relation are demonstrated and the coneti-
tutive relation is used to determine vibration time histories of a single
degree of freedom oscillator having an elastomer damper.

NOMENCLATURE

Dt Energy dissipacted in a unit volume of mater-

ial undergoing uniform, sinusoidal strain

p*: ‘The operator notation for a generalized

derivative of fractional order =

F(w)t The Fourier transform of the applied
force

GO.GJI Parameters in the generalized deriva-
tive constitutive relation

ki

k

v

stiffness

.kj: Resulting stiffnesses from the genera=

lized derivative constitutive relation

L: The operator notation for a Laplace trans~
form

m: mass

u;

The maximum strain, energy stored in a unit
volume of material undergoing uniform, sin-

INTRODUCTION

The damping and stiffness properties en-
countered in elastowers undergoing steady-state
sinusoidal motion are generally described by a
complex modulus with real and imaginary parts
that are functions of frequency and tempera=
ture [1], For a gilven temperature a typical
elastomer exhibits distinctly different damping
and stiffness properties ws the frequency or
sinusoidal motion is varied, Fig. 1 [2]. At
low frequencies (the rubbery reglon), an elas-
tomer has relatively low and frequency indepen—
dent stiffness, and has relatively small damp-
ing that incresses with frequency. At high
frequencies (the glassy region), an elastomer
has relatively high stiffness that is again
frequency independent and has relatively small
damping that decreases as frequency increases.
At intermediate frequencies (the transition
region), the elastomer has stiffness that in-
creases with frequency and has relatively high
damping.

usoidal strain

rubbery
region

transition
region

glassy
region

x(t),X(s): A displacement time history and its

Laplace transform

xl(c),xl(s): The displacement time history for

impulsive loading and its Laplace
transfrim

X(w): The Fourier transform of a displacemenut

T,

time hisrory

A parameter of the generalized dJerivative
constitutive relation

e(t): a strain history

g(t): a stress history

stiffness

l
| |

|
|

l

|

Increasing Freguency +

Increasing Stiffness +

o

&

3

Jod

=

®
Ircreasing Dawping +

Fig. 1. Typical Elastomer Properties
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The typical current practice is to incor-
porate the propertiecs of an elastomeric materi-
al into the equation of wotion In the complex
lrequency domaln

m(1)2X(w) ¢ KX(w) = Flw) (1)

by substituting for k the complex number that
represents the material properties at amblent
temparature and at the [requency of greatest

interast, typically, a resonant frequency.

(L) 2X(w) + (Lk sgnCw) ¢ kIX(u) « Fa) (2)
sgif{w) - ¢ly @ >0 )
agh{m) - =1, w <O (4)

This method ot constructing the equation of mo-
tion is known an the "complex modulus method."
Notice that the resulting equation of motion
has exactly the same form as the equation for a
single degree~of-freedom (DOF) oscillator with
"structural damping" [3],

Unfortunately, this approach contains sev=
eral lnadequacies, from a mathematical point of
view. The first of these is that the equation
of motlon has A non-causal response to {mpul=
sive loading, which erodes the credibility of
any solution for a broad band input [4]. The
second problem area arises if one attempts to
express in the time domain the equation of mo-
tion having Eq. (2) as its transform [5].

k
mk(t) + [lw 1% sgn(u) + ko]x(t) = £(L) (5)

The inverse Four:er transform of the Fourlier
transform of the above equation will, in gener~
al, not return the original equation. The
equation mixes time and frequency parameters;
hence, any sclutlon obtained with integral
transforms us.ng frequency as a parameter has
no precise mithematical meaning.

In spite of these mathematlcal weaknesses
rhe complex medulus method yilelde acceptable
results in some cases, The method predicts
steady-state, sinusoidal responses that are in
many cases in good agreement with experimental
observations, In addition some transient re-
sponses can be closely approximated [6],

It canuot be denied thac the complex modu-
lus method is a valuable engineering tool; how-
ever, a mathematical model tor elastomeric ma-—
terials with frequency dependent stiftness and
damping properties that is free of mathematical
contradictions 1is desired. 1t is the objective
of the authors to present such an entity; the
generalized derivative model of an elastomer
damper.

GENERAL1IZED DERIVATIVES AS CONSTITUTIVE RELA-
‘TIONS

The generalized (or fracticnal) derivative
ig a linear operator that wiil be used to model
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lirear. frequency dependent damping and sciff~
ness. The peneralized derivative of real order
2, O < e <], of the function c{t) is defined
to be [7]

L) gy - Lo b [ eteen

dt. (b)
de r(l-z) dt ot
o
r(l=g) = I e *x "t (7)
o

The utility of this definition becomes more
apparent when onc examines the Laplace trans-
form of the genervallized derivative,

L0 (t)) = sZ4icle)) (8)
18582y arge(o)) - cla) 9

Notice thut the Laplace transform of a gencra-
lized derivative of order 2z yields a coeffl-
clent 82 lnstead of the s that results when the
Laplace transform of the first derivative is
taker.

Ceneralized derivatives have buen used by
Caputo to model frequency dependent damping oh-
served in geologlcal strata. Caputo was suc-
cessful in obtaining approximate solutions to
the equations of motion for an infinite, visco-
elastic layer with uniform, prescribed motion
on one surface [8]. Caputo has also solved a
moditied one-dimensional, viscoelastic wave
vquation for unbounded regions where dissipa-
tion was modeled with generalized derivatives
[9]. 1n addition, Caputo investigated the na-
ture of hysteresis resulting from a sawtooth
strain history in a material where the damping
and stiffness were modeled with a generalized
derivacive [10].

Caputo chose to use a slightly different
definition for the genera'liwed derivative.

at c(t) = —2 [* de(n) L
o

dc® r(l-z) dt (t-1)

dv (10)

This definition, Eq. (i0), and the definition
stated earlier, Eq. (6), are equivalent if

e(o) = O, The following investipations deal
with mechanical systems excited from a state of
rest. Hence, the assumption that e(o) = 0 will
be made in all cases.

Caputo suggested a general constitutive
relation for one dinensional deformation, of
the form

£.,n
olt) = pe(r) + —= f defn) 1 dt.(11)
r(lez) § di" (e-1)®

G<z<l n=1,2,3,0000,

Here o(t) is the stress, e(t) 1s the strain and
u and n are parameters describing the macerial.
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For n equal 2 and greater this constitutive re-
lation models material properties that are
strongly frequency dependent, O(wl+%) and high-
er. Buch s strong frequency dependence is not
characteristic of the elastomer of interest
here, thus a constitutive relation correspond-
ing to a much weaker frequency dependence is
adopted, using a superposition of generaligzed
decivatives of the type presented in Eq. (6).

J G t
o(t) = Goeft) + | S - J e(t1) o )
=1 r(1-zj) de & %

0<se, <1

)

(12)

or

J 2y
a(t) = G elt) + [ G0 JHe(e)) (13)
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This constitutive relation will be used to mod-
el the behavior of an elastomer undergoing
shear strain in the rubbery region and into the
transition region, and will hereafter be re~
ferred to as the RT model,

Before introducing the RT model into the
equation of motion of a single degrue of free-
dom osclillator with elastomeric damping, the
hysteresis behavior of the RT model will be ex=-
amined. To accomplish this, a sinusoidal
straln history, c(t), starting at t = O, will
be assumed and o(t), the resulting stress hia-
tory, is calculated. First it must be shown
that the RT model produces a hysteresis loop,
and second it must be demonstrated that the
struss required to attain this hysteresis loop,
starting from rest, is physically realizable.
The firsc requirement on o(t) 1s assumed to be
met i{f o(t) becomes sinusoidal in the limit as
t becomes very large. The second requ:vement
on o(t) will be assumed to be satisfied if it
can be shown that the stress history i: a
bounded, continuous function of time.

We begin by letring

e(t) = esinwt , £ >0 ;

e{t) =0, £t <0 (e
a(t) = Gye sin w t (1s)
. % _El:2=_ 4 Jt sin w:(t—T) o
i=1 P(l—zj) de o x4
and note that
1 4 I: sin ug(t—x) o

r(l-zJ) de 5 04
3 mO JCCOS NO(E—T) de (16)

) r(l-zj) ° v
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and

- w + t 8ln w_t
con uo(t ¥) u cob ot €98 W T sin “y now

(17
Then
L3
1im 'j NoCOI uot I cos uo1
D (e ain w t) = 3 dr
tow [+ [¢] T(l-lj) 4 T ]
(i8)
uolin uot I- sin W,
* -y dt .
J
P(l—:,) o

The two integrals in Eq. (18) are in fact the
Fourier cosine and sine transformations of 71~
Evaluating these integrals and supplyirg some
trigonometric manipulation yields

e 1
lim o j:osin(uot + —%—).(19)

*3
tom [ (colln wot) = w
Thus, in the limit as t becomes large, we
have

lim
Lo o(t) = Gocosin wyt
J . - (20)
+ le Gjuo :osin(uot + —%—) .

Since the superposition of any number of out of
phase sine waves can be expressed as a single
eine wave, the existence of a hysteresls loop
is established, and that loop 1s elliptical.
For posipive Gj and Zys the stress does lead the
strain, as one would expect.

To demonstrate that o(t) is a continuous
function, Laplace transforms are used. Tsking
the Laplace transform of Eq. (15) produces

k4
1
GCe uw J G,c w_s
Llo(r)) =200, v deeoe = (g

52 + W 2 =1 8" + w 2
o o

Using a theorem (stated in full in Appendix A)
that deals with existence of the inverse Laplace
transform, one can show that the inverse trans-
form, o(t), exists and that o(t) is a continu=
ous function for all time and that o(t) = 0,

t < 0. Since we have already indicated that
o(t) is sinusoidal for t large, and we now know
that o(t) is continuous and o(t} = 0, ¢ < 0, it
may be concluded that o(t) is hounded for all
time.

Several parameters useful in the evaluatim
of the damping, or energy dissipation, may be
computed., The total energy dissipated by a
unit volume of material undergoing a homogene-
ous strain given by Eq. (14) is

e(T) 2w/wo

N

D = I ode = J oédt (22)
o ]
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Substicution of Eq. (14) and (20) yields

z PR
3
ok Gj“o sin ‘%— (23)

1

D = wg

3

The maximum energy stored at any point in
the cycle ls

H max
u - [ o, (2)de (24)

where o,(c) is the porticn of the total stress
given by Eq. (20) which is in phase with the
strain, For e = cnsin w b,

2

z L,1 c
] dy
cos —3 ) 2 (25)

J
U=1{¢ + 2 G,w
-] §=1 jo
Finally, che loss factor, n, can be com=
puted by dividing the energy dissipation per
unit volume by the peak energy stored per unit

volume, and introducing the customarv factor of
2n.

J 2 z, v
n = T%U =(] cum Jsin —%—) + (G
- j=1
2z R (26)
j -1
+ jzl ijo cos *%—) .

We note that the anerpy digsipated, the
energy stored, and the loss factor all display
a frequency dependence. For a materlal which
can be modeled by a single term, l.e.,

z
4 1
o(t) = G, —= e(t) , 27)
1 2y
dt

the loss factor is seen to be
n o= tan 1 z\/Z ' (28)

which 1s independent of frequency, as was noted
by Caputo [11].

THE RT MODEL AND DAMPING

The RT model will now be used to construct
the force-displacement relation of a spring
mass system containing an elastomer damper,
where the elastomer experiences a one-dimensicn-
al shear strain, Fig, 2. The force=digplace-~
ment relation for the elastomer damper takes

the form
O Fd(t)
e
—

AAAAN .

777777774

¥

Fig. 2. A Damper Employing an Elastomer
Undergoing Pure Shear Strain

J H
Fye) = kox(e) o § k0 dix(e)).  (29)
° a1 4

Using this damper to dampen the motion of sin-
gle DOF oscillator with external force F(t)
produces the equation of motion

Fig, 3. A Single DOF Oscillator Using
an Elastomer Damper

J 2
mi(e) o ] kD I x(e)) « kn(e) = £(e)  (30)
3=l

for the system shown in Fig. 3 where

k = ko + K (31)

The solution to the equation of motion for
the damped oscillator is dependent on the par-
ticular cholces of J and 2;. For the purpose
of demonstrating that a sofution to the equa-
tion of mocion can be obtained, and in order to
investigate the properties of such a solution,
we will consider a particular case” J ~ 1, and
7 = %, or

mECE) + ky ¢ DM} 4 kx(E) = £(6)  (3D)
We apply the methnd of Laplace transforms to

determine the response x,(t), to an impulsive
loading, f(t) = 6(t). Taking

x(07) = X(07) = 0 (33
we find
X, (s) = (ma? o kst 07! " (36)
where [12]
lw, t ™ t
x () = L—l(XI(s)) = ce ., ce L
- - 35)
- e rclir (
* 3 I T o2 L1 9
5 (mr® + K)° « k1 r

Since {w; is complex with a negative real part,
the first two terms in the solution are expo=
nentially decaying sinusoids. For t large the
integral in the solution takes the form %13]

*
The solution technique for the more general

case, Eq. (30), 1s demonstrated in Appendix A.
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t > M, J - dr
° (mr2 + k)2 + klzr
¢ (16)
o e "tk /¥
~ 1
= J 3 dr
o k
= e kysx Ky 13z
e L Y (37
° k ke t
=3/2

Since the {ntegral decays as t for large t
and the other terms in the solutlon decay expo~
nentially, the Integral dominates the impulse
response tor large t [l4].

=3/2

LS M, x[(:) ~t (38)

Although not readily apparent, x.(t) is a con~-
tinuous, real function where x (E) = 0 for
L < o, !

It has already been shown that sinusoidal
strain in the RT model produces sinusoidal
stresws. It remains to be shown that a sinu-~
soidal force acting on the system in Fig. 3
produces sinusoidal displacements after trans-
ients have died out. To obtain the displace-
ment time history of the elastomer damped os—
cillatnr for sinudoidal loading applied at
t = 0, ane can convolve the forcing function
with the impulse response given by Eq. (35).

t
x(t) = j f(t“T)Xl(T)dT (39)
0
t
xs(t) = I fosin mo(t-1)x1(x)d1 (60)
)

Performing the integration in Eq. (40) and re-
taining only those terms in the solution, x _{(t),
which do not go to zero as t becomes large
ylelds
iuot —Lmot
. ce fo ~ce fo
Lt > M, xs(c) = Re(?a;d:—zzj} + Re(?ﬁ;—:=::7)

- £ y (41)
e °f In klr dr

- }
b [(rnr2 RESLIN klzr](r + 1u)

For t large, i.e., after the transients
have died out, a sinusoidal load is seen to pro-
duce a sinusoldal response in the structure.
This prediction is, of course, essential {f the
RT model 18 to be used to describe real materi-
als since sinusoldal loadings in experiments
conducted to determine the material properties
lead to an observed sinusoidal response.

w
These properties of x,(t) are proven in
Appendix A,

We have now demonstrated that the RT model
leads to predictions which are correct in s/ .-
eral respects. The response is causal, a sinu-
soldal input leads to a sinusoidal response,
and the sciffness (or modulus) and damping ire
frequency dependent. It vemains to be demon-
strated that the frequency dependence is char-
acteristic of materials of interest.

THE RT MODEL FOR 3M-467

The data given in Fig, 4 are the observed
properties [lsﬁ of IM-467 [16]. The material
properties are those for 23.99C, however, not
all of the data given was measured at 23.9°C,
Experimental measurements of the properties of
IM~-467 were performed at numerous frequencies
between 320 Hz and 6100 Hz and at temperatures
ranging from =31.69C to 93.3°C. It was then
assumed that 3M-467 was a '"thermo-rheologically
simple' material and the 'temperature-frequency
equivalence' principle was invoked to reduce
the data to the single temperature of 23.9°C,
The rcsulting range 05 equivalent frequencies
was from 10° Hz to 10° Hz [17].

The data from the first three decades,
10° Hz to 103 Hz, were used to construct a
three parameter model for 3M-467 in the upper
part of the rubbery region and the lower part
of the transition region. Let

z
o(t) = 2(Go + 6D 1)c(l:) (42)

The values of the parameters, G,, Gy, and 2z,
were determined by choosing initial values to
match asymptotes and slopes and then making
iterative changes to parameters until an accep-
table fit was obtained. The final values for
the material parameters describing 3M-467 were
found to be

- 4 ; (43)
G, = 5.5 x 10 Newtonh/(meter)Z
4 1 56
Gy = 4,1 x 10 Newtons-(sec.) /(meter)z(Ah)
il = .56 (45)
For a sinusold strain history
() = ¢ 't (46)

the stress time history at large time takes the
form

*
o(t) =G e otk
o

(47)
where
e 2
G = G° + Gl(im) (48)

The frequency dependent shear meodulus, G, is the
real part of the frequency dependent complex
modulus, G, or

(49)
G = Re{(5.5 x 10‘) + (bal x IOA)(lu)'sc}
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(USAF Materials Lab Test = December 77)
With Generalized Derivative Model
Superimposed
The loss factor, n, is calculated by dividing o(t) = 26'e(t) + 2G"&(t) (51)
the real part of the modulus into the imaginary

part of the modulus, or

!
Im(Gl(iw) }
n =

z (50)
Re(G, + G (1u) ')

The same result is found using Eq. (26). The
predicted frequency dependent modulus, and fre~
quency dependent damping, (solid lines) are
compared to the initial data in Fig. 4. The
agreement is seen to be acceptable, both qual-
leatively and quantitatively.

The genavalized derivative model for IM-467 ¢
uses frequency independent parameters, G,, Gy,
and z), determined from data taken in the time
domain, te correctly model the frequency depen-
dence of the shear modulus, G;, and loss fac~
tor, n, over three decades of frequency. Since
the frequency dependence of G and n is correct-
ly modeled, the generalized derivarive model
can be employed to determine the response of
3M-467 under broad-band loading and response.

I1f the properties of IM-467 were modeled
by a single frequency independent complex num-
ber as is the case for "structural damping' or
the "complex modulus method,' the observed fre-
quency dependence of the shear modulus, G, and
loss factor, n, would not be well modeled.
While the loss factor of 3IM-467 1s seen to be
quite insensitive to frequency, as in the com-
plex modulus method, the significant frequency
dependence or the modulus 1s not well modeled.

A standard linear viscoelastic model

140

1s even leas successful in approximating the
properties of 3M-467. The linear viscoelastic
model predicts a frequency independent modulus,

G = G' (52)

rather than the observed frequency dependent

modulus, and predicts a loss factor proportional
to frequency,

n = 29; (53)

rather cthan the (essentially) frequency inde~
pendent loss factor which was observed,

CONCLUSIONS

The generalized derivative ls a linear
operator that has been shown to be capable of
modelling the frequency dependent stiffness and
damping properties in the rubbery region and
into the transition region of IM-467, 1In addi-
tion, the generalized derivative was found to
lead to an appropriate stress-strain law or
constitutive relation in that the stress time
history is well behaved (continuocus and
bounded) for sinuscidal strain. 1In addition the
stress time response to an induced sinusoidal

strain was found to become sinusoidal for large
times.

When the model {3 used to portray an elas-
tomer damper ln a single DOF oscillator, # sin-
usoidal loading was shown to produce (at Mirge
time) a sinusoidal time history. Moreovery the
impulse response of the elastomer damper was

s
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shown to be causal, as is necessary {f respon-
ses to arbitrary loadings are to be computed.
In this respect, the generalized derivative
leads tc modele of elastomer responses which are
superior to "structural damping" models for
which {mpulse response is non-causal. The es-
sential mathematical feature of the generaliged
derivative model is that it is a time domain
model which properly predicts a frequency de-
pendence, rather than a model which mixes time
and the frequency parameter, as do the 'struc-
tural damping model" or the "complex modulus
method."

In summary, the generalized derivative
mode]l describes the linear, frequency dependent
stiffness and damping of 3M=467., When used to
model the motion of a single DOF oscillator
with elastomeric damping, the mathematical in-
adequacies of the "arructural damping' model or
the "complex modulus method" are avoided.

APPENDIX A

In this section, we present the method
used to obtain the response, x;(t), to an im-
pulse loading. The Laplace transform of Eq.
(30) for impulsive loading is

2 J zJ
ms Xl(s) + 1 ks X () + kXI(s) =1 +(A-1)
=1
Let
J 2
ds) = I ks i (A-2)
j:l

(yj are assumed rational)
Then the Laplace transform of the impulse res-
ponse is

X;(s) = (ms? + d(s) + k)" (A=1)

At this point we wish to establish the existerce
and the properties of the inverse Laplace trans—
form of X{(s). To this end we quote a theorem
on the inverse Laplace transform [18].

"Let F be [a Laplace transforn and]
any function of the complex varjable
s that Lf analytic and order s™% for
all s (8 = x + iy) over a half plane
%x > a, where k > 1; also let F(x) be
real when x > a. Then for all real t
the [inverse trangform is] a real-
valued function,; f.,«. Furthermecre
f(t) 1ig a continuous function of ex~
ponential order and E(t) = O when

t i O.H

X¢(s) is a Laplace cransform that is &
function of the complex varlable s (s = x +_iy)
The term d(s) in Xl(s) contalns functions x°J,
0 <z, <1, that are analytic everywhe:e except
along branch cuts, which are chosen by conven-

lal

tion to lie on the negative real axls of the s
plane. Thus, the functions, s J, ate analytic
in the half plane defined by x > 0 and Xy(s) is
analytic for x > 0. Since X;(s) ts also real
for real and positive s, one can conclude that
X, (s) satisflies the conditions stipulated in
the above theorem. As a result, the impulse
response x1(t) is a contlnuous function ot ex-
ponential order and xj(t) = 0 for t < 0. Con-
sequently, xl(t) is causal.

Contour integration is employed teo evn1u=
ate the inverse Laplace transform

y+lo

(t) o =L ot ds .
wle) = 27 2 (A~
yelw ma- + d(s) + k

The inversion jintegral is evaluated by
using the "residue theorem" [19] and the inte-
gration contour given in Fig. 5.

Fig. 5. Integration Gontour to Evaluate
the lnverse Transform of the
Impulse Response

é g(s)ds = 2ni § B (A-5)
n

<

Bp are the residues of the poles of g(s) en-
closed by the closed contour, c. The contour ¢
is comprised of six segments.

6
é gla)ds = § I g(e)ds (A-6)
A k=1

The integral along contour 1 becomes the inver-
sion integral as R+» and can be expressed as

1im _1
xl(c) = Reeo m J g(S)dS
1 (A-7)

6
11 1
- g reraR) J g(s)ds + | B
k=2 K n

where
gls) = eStXI(s) = (ms2 + d(s) + k)-leSt. (A-8)

To determine tha inverse, we must evaluate -he
integrals along contours 2 through 6 and the
residues Bn.

AL




The residues are generated by two polee of

-¥ i@
the transform at s = iw] and & = Twj. The lo- I (8)¢ exploteont + 1:in0)t]oe‘ii g8
cations of these poles, fw| and iu;, are solu- 8 &= [02‘120 . d(oelo) v k)
: tions of the equation 4 e m (A=17)
P mal + d(s) + ks 0. (A-9) s = 0e'® = plcond + tsine) (A-18)
where d(s) is evaluated by using the principal -
i branch of 8°J. The residues of the poles are J 552%9123'0 * t’t::)~325-= deo
Do evaluated using the limiting proceas te [0 m + dlpe™) 4+ k]
lim 1 ST ~¥
B, = wlu (s=tu, )(s m o+ d(s) + k) (A-10) . < I ex cosd + iaind)t loet? w
. e eiulc - o [02 bze, d(pelo) + k]
-
0
Similarly < I ¢°::° £ — do ; Aet9)
B, = :f':u (3-T5) M6%m » () » 7' (A1) prk ~ (1dlpeT ] 4 07w 4
.z e‘”lt for p < o' where 9

" *
k = (1dCe"e!®) | + o*%m) = 0
Contribution from the segment of the con~ E .
tour labeled "2 may be shown to go to zero in e’ anp
the limit as R+w=, h!

k- (dleet®) | o oZm

l g{s)ds = I“ exp[R(coa8 + lsinO)AJ 18
R

il
e 1do E
7 120 ot .
a v ame) v, Mmoo e 2 7= 0 (A-20)
ko~ (ld(pe )] + p"m)
s = Re'? = R(cosp + isine) (A-13) .
" I8 lim J eiplplcost + isinb);]peiai 48 < O + 10
exp[R(cos® + isine)tRe "ide o+0 2 120 . 19 =
2,120 1o w L m+ dipe’") + k] (A-21)
. (r%e + d(Re" )]+ k
" 18 Hence, the contribution of the integration on
< J exp[R(cos® + isind)t]Re i g8 contour & 1s zero.
- [Rz 128, d(ret?y o k]
a * The evaluation of the contribution from
. segments labeled 3 und 5 are given below., On
vt R de contour 3, s = re'™ and on contour 5, s = re=‘™.
5I ) io T (A-16) Thus
a Rim - (Jd(Re" )| + k)
« I g(s)ds + I gls)ds
for R > R where 3 5
1 w2 * ip 4
i R“m ~ (Jd(R e ") + k) = o (A-22)
; -rt
3 <=3 e 8 ) (n-a) 0T I T N
. Rén - (Ja/Re!®N) + 1) w W+ d(reT) + %
| re
Yt _ I ar
{ ;ﬁ: ; e'"R 1éﬂ a) -0 (A-15) o r + d(re i") + k
. R°m - (|d(Re"")| + k)
n 10 It should be noted that
! lim exp/R(cpsd + isind)t]Re
Rve 2% {0 dé = 0 + 10 {x “tn
; [R€e + J(Re" ) + K] (A-16) d(re” ) # d(re )} (A-23)
t Similarly, the intagral along contour 6 can be but rather, that )
([ shoun to be zero. d(l‘eL“) - d(re-“) (A=20)
T crivuci f th tour labeled
‘ 4 can :: :::w: ::cb:nze:gT 1net;:n1i::t :sepfo. and the sum of the two integrals will not vanish
{l Combining the contribution from the
I
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residuvs with that from the last pair ot cone
tours, the Impulse response con be expressed as

1
nl(t) T I v
[+]

Tt 1

-

mr2 - d(re"l") + k

1
e —— e, dr (A-25)
mel . dral™ + &

iwlc - T;

+ Cce F Cc8

lt

This integral may be evaluated for any
operator d(s) of the form given earlier. From
this, convolution may be used to determine the
response of the single degree of [reedom system
to any broad-band excitation for which a
Laplace transform may be evaluated.
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SHOCK RESPONSE OF NON-LINEAR SYSTEMS
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on Teave of absence from
Technion Israel Institute of Technology

: ) The response of many practical systems to shock excitation resulting
A from a drop on 2 hard surface can not be predicted adequately by sim-
ple Tinear elasticity and damping models. A more realistic model

consisting of a mass between two preloaded non-1inear (cubic elasti-
city) springs and restrained by a Coulomb and viscous damper {s

- ) proposed. An approximate quasi-harmonic solution of the non-linear

[ differential equation of motion of the mode) whereby both amp)itude
o and phase are time dependent, enables a study of th2 motion during ;
the first half cycle (pulse) after collision. Formulae are developed L
for calculating peak acceleration, rise time, pulse duration and max- ;

3 imum deflection. These are compared with corresponding formulae of
- special cases for which exact solutions are known. Acceleration versus
! : time pulses are classificd fn accordance to pulse shape, e.g. sawtooth,

halfsine and trapezofdai, as a function of system damping. Although

the model 1s intended riainly for quantitative design in packaging
engineering problems it is suitable for studying genera) shock isolation
problems as well.

INTRODUCTION It 1s well know:i that damage sensitivity (fra-
gility) of many products is a function of peak
The response of many practical systems to acceleration, duration and shape of the first e
: shock excitation resulting from a drop on a rel- (first half cycle) acceleration time pulse from !
- atively hard surface (substrate) cannot be pre- the instant of contact with the substrate (4,5]. :
: dicted adequately by simple linear elasticity The influcnce of preloading [6] the system is,
3 and damping models. Mindlin [1] investigated however, less recognized. The popularity of , :
C extensively the response of undamped spring mass linear ealsticity and viscous damping models 1s
3 systems with different elasticity functions to due to the simplicity of the mathematics
- shacks resulting from free #all drops. He also required for solving the equations of motion of
L investigated the response of a Kelvin model such models. Unfortunately, many practical pro-
R (viscously damped linear spring mass sy-tem) to ducts exhibit non-linear elasticity as well as
! drop shocks. Comparing the shock acceleration combined viscous and dry friction {Coulomb)
time pulses of an undamped 1inear mass spring damping characteristics. The applicetion of
F system to the pulse of a Kelvin model, Mindlin 1inear models in such cases may lead to signi-
S found that the additfon of viscous damping ficant discrepancies between the model and
S changes the undamped sinusoid of the simple 1in- reality. In this article we shall endeavor to
: ear spring mass system into a damped sinusoid analyze a preloaded single degree of freedom
i «1th shorter puise duration time and increased system with non-linear elasticity and combined
initial phase. Mustin [2) describes a procedure Coulomb and viscous damping. In particular, we
a for calculating the peak acceleration and maxi- shall develop formulae for calculating peak
i mum strain of a cushioned item resulting from a acceleration, pulse duration, and maximum
free fall drop for different cushior elasticity deflection of such systems resulting from a free
o functions in terms of a "Cushion Factor" due to fall and impact with a hard substrate. The sys-
- Jansen (3]. This cushion factor is a ratio of tem to be considered is schematically i1lus-
;o the peak stress developed in the cushion to the trated in Fig, 1. The mechanical model consists
: I energy stored per unit volume of the cushion, of a mass M contained in an infinitely rigid
X practical application of this procedure requires frame and restrained by two massless non-1linear
- the ability to measure the instantanenus energy {"hardening") springs, a dashpot and a dry fric-
| stored in the cushion which is not an easy task. tion damper. Shock excitation is achieved by
[
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Fig. 1 - Mechanical model of a preloaded single degree of freedom system
with cubic elasticity and combined Coulomb and viscous damping.

letting the rigid frame free fall through a
distance h whereby it hits the substrate in a
perfectly flat drop.

The main practical applications of the
nodel are intended for packaging engineering
design problems. However, the mode] is general

enough for other applications as well. In pack-

aging probiems the model may represent a cush-
ioned item in a rigid container or a dropped
pallet-load of shipping containers. The lower
spring would represent the lower cushion or the
most heavily loaded containers in the bottom of
the stack, the mass represents the dead weight
nf the stack of containers on top of the bottom
containers or the cushioned item, while the
upper spring represents strapping forces and
elasticity of the upper containers in the stack
or an upper cushion on top of the cushioned
item. The dashpot and friction damper repre-
sent the combined energy dissipation capabili-
ties of the system. For the force deflection
characteristics of the springs we choose cubic
elasticity of the form:

F o= kX +rx3, (1)
where Ko represents the initial spring rate,

%%-when % =0 and r is the hardening spring
coeffictent. It can be shown that no general-
ity is lost by such a choice since by proper
choice of K, and r it is possible to obtain an
adequate fit to most practical force deflection
curves, It can also be shown that the combined

initial spring rate and hardening coefficients
of the system are equal to the sums of the
respective values of the two springs:

Ko = Ki + K, and r = ry + r, provided that
both springs » - naver unstrecsed. Thus, the

influence of ading is imbedded in the para-
meters K, - nd the systum may be analyzed
as a single - . .e of freedom system.

EQUAT IO OF MOTION

Suppose that now the rigid frame is
dropped from a height h, free falls and hits
the (substrate) in a perfectly fiat drop. We
want to examine the resporse of the system from
the instant of contact with the substrate
onwards. As long as the frame remains in con-
tact with the substrate, i1.e, there is no
rebound, we have the following equation of
motion for the relative motion of the mass M
with respect to the frame:

MK+ kX + X3+ kv Feson(R) =0 . (2)

The conventional single and double dot notation
will be used for the first and second time
deri.atives of the relative displacement of the
mass M with respect to the frame. The other
symbols are described in the notation list.
There is no exact analytical solution for
equation (2); however, an approximate solution
can be obtained by using the "Linearization
Principle” due to N. Kryloff and N, Bogoliuboff
[7]1 whereby a quasi-harmonic solution of the
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form X = Acos{uyt + ©) satisfies equation (2)

to within accuracy of re, Thus, for smal) val-
urs of r, the approximate solution 1s very near
the exact solution, while the results for rels-
tively large values of rc are well within the
accuracy required for engineering problems,

The quasi-<harmonic motion is periodic, but
unlike in true harmonic motion, hoth the ampli-
tude A and phase o are functions of time rather
than constants., The Kryloff-Bogoliuboff method
of linearization consists essentially of trans.
forming a non-linear equarion of the form:

M ¢ KoK + rF(X,K) = 0 (3)
into an equivalent linear equation (4):
M{ + AX + KX =0 (4)

whe  f(%,X) must be an odd function and the
par.- :ters X and K are defined by equation (5)
and (6) as:

2n
r ¢
ﬁﬁ:: é f(Acos9e, A sin¢)sineds (5)

>
"

21
Ky + ﬁ% of f(Acose, -Au sing)cossds

(6)

P
"

Here ¢ is a dummy variable of integration.
The quasi-harmonic solution then takes the
form:

X = Acos{u.t + %) = Acosy (7)

where:

(8)

Qlﬂ.
>
raj>-
3|J>

sl
3
€
"

K
"o (9)

1t can be seen from equations (&) and (9) that
both the amplitude A and frequency of oscilla-
tion w are functions ot time. In our case, we
have, from equation (2):

. . F .
f(X, X} = %3+ % X + Ff- sgn(X). (10)
Inserting equation (10) intc the integrals in

equations (5) and (6) and performing the inte-
gration we have:

2n CAw
s =¥ 3,53 . o 2
A ﬁﬁ;; ﬁ (A%zosgsing sin @(]1)
F . 4F;
+ sgn(X)sin¢) db = C + ﬁﬁ;;
21 CAuw
r 3. .4 o
K= Kg+ I (A%cos™ - —— sinpcose
FOhTo( ' (12)
f v N 3 .2 12
+ sgn(X)cose)de = K + ¥ ra |
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By introducing the notations (13) through (18)
we can write equations (7), (8), (9), (11) and
(12) in a dimensionless form to enhunce the
analysis of the system,

6= /% (13)
v k2K (14)
D= C/2Ms, (15)
o= Fe/K Xy (16)
nE we, (17)
e = XXy (18)

Here X, is the maximal permissible relative

displacement of the mass M with respect to the
frame, say bottoming deflection of a cushion or
a container deflection causing unacceptable
damage to the product inside. Equations (7),
(8), (9), (11) and (12) are then respectively:

€ = Acosy (19)
%% = . wO(DA + %ﬂ (20)
B a o\ /520 + fuad) (21)

t A e

- 4
A= w M(20 + o2 (22)
K= Kol1 + 2w (23)

The parameter X may be considered as the energy
dissipation coefficient of the system while K
is the equivalent spring constant in the lin-
earized system, The dimensionless frequency
ratio n is readily derived from equation (21):

e I (24)
\,KO/M .

Equation (20) may be rewritten:

L,
rdtE -l wme (25)
Il

Performing the integration we have:

] 2 :
t= - g In(Da + %) + C, - (76)

Denoting the undamped amplitude ratio (when
t=0) by 4 . we find the constant of

L o

e
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Integration Cy:

-l 20
¢, s In(Da, + £2) (27)

After some algebraic manipulations, equations
{26) and (27) lead to:

be Aoe'D“’ot - %%(1 - e'D“ot) . (28)

Equation (28) indicates an exponential reduc-
tion of the undamped amplitude 4, as a function
of time t, viscous damping ratio D and natural
initial frequency w, of an equivalent simple
spring mass system with spring ratio K,., The
damped amplitude A 1s further reduced by the
Coulomb friction parameter a, Note that when
a » 0, equation (28) 1s reduced to the familiar
expression for the logarithmic decrement of a
Kelvin model {viscously damped 1inesr spring).
To find the initial undamped amplitude ratio
A?. we take the first time dertvative of equa-
tion (7) to obtain the velocity X:

i = %% cosy - Ag% siny (29)

At the instant of collision with the substrate,
after the free fall from a height h, we have:

= - = EH = .=
teXe0,b=os T, A ag K =Vaon,

Inserting these initial values in equation (29)
and making use of equation (21), we obtain:

Voo = Ay \[1 + B ? (30)

This may be transformed into a dimensionless
form by dividing both sides of (30) by Xp:

B2 = 82 (1 + 3o ?) (31)

Now E; 1s a dimensionless shock excitation
parameter defined as:

- YEh (32)
S wao )
Solving the quartic equation (31) for 4, we

obtain the expression for the undamped dimen-
sionless amplitude ratio:

B =\/?3-uc i+ 3l -1 (33)

Notice that 4, in equation (33) 1s undefined

at u = 0, however, it can be seen from equation
(31) that in the linear case we have the
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familiar expression

by * Eg, OF A » V2HR/KG!

SOLUTION OF THE LINEARIZED SYSTEM

The displacement, velocity and accelera-
tion solutions of the l1inearized system repre-
sented by equation (4; with _the initial condi-
tions, t = 0, X = 0, X =\/2gh considering A
and K as constants, are well known from elemen-
tary shock and vibration theory, namely:

-But
X = £ sin(\1 - 82 ut)  (34)

W V] - B§
"Bwt ]
% - @3—— cos(\j] - 32 wt » &) (35)

1-8

- -But
v . uf2gh e Pt cos{ 1 - 8% wt + y)(36)

1-8

Here B is the combined viscous and Culomb dam-
ping ratio (equation (37)) while 6 and v are
the pkase anales of the velocity and accelera-
tion (equations (38) and (39)).

35A=__R.:aﬁ;_=(0+gg.\l (37)
M To? n
1+ 3up2
2
tgs = —b (38)
1 -8t
2
ty = 2 -1 (39)
28\ - g

Using the definitions of equations (18), (24},
(32) and (33), we can rewrite equations {34)
and (36) in the nondimensional form:

Bnuwgt
by e

€ sin(n\N -32 wot) (40)

1 - 8%

2, 24 a=Bnugt

v NewatALe o

¢ = 22— cos(nV1 - 8° wot + 1)
Lo (a1)

Here, w, and A are independent of time and
K

given by w, = $f1 and equation {32) respec-

tively, while n and 8 are time dependent

) il

all

A

-

il L I

d

o

TR

. Lol 28 o




oy

T

vy

uantities given by equations (24), (28) and
?37) respectively for any time t. For haavily
damped systems, the motion {is aon-oscillatory
and the maximum value of £ occurs at t = D
decaying with time to zero, The value of this

initial relative acceleration &, is ubtained by
setting t = 0 in equation (41):

nozm ZAO

gy o : q_gi.cosy = ZBEswozno (42)

= 2Equ,2(D + %%b) .

In 1ightly damped systems the motion 1s oscil-
latory and the maximum values of relative
accelerations tp occur at times greater than
zero, These times may be found by setting

¢ = 0 as well as the third time derivative

€ =0, respectively, These rise times, ty),
for maximum displacement and tg o, for maximum
acceleration, are glven by:

2
N 3 1.8
tg(”m] 1- em% Wotm) = B ml (43)
tg(nmz\ll - Biz motmz)

) e (44)

(1 -48,) Y1 -8
Y
Bpa(3 - 485,)

These times, together with their corresponding
values of 8y M and Bm. must simul taneously
satisfy equations (24), (28) and (37) as well
as (43) or (44). Thus, we have in each case
four simultaneous independent equations and
four unknowns tr, Aps n. and 8, which may be
found by simultaneous solving equations (24),
{28), and (37) with (43) or ?44) as may be the
cace,

For computerized calculations, a solution
of any desired accuracy is possible by an iter-
ative process of successive approximations with
the initial value of

wot = % . The maximum values of the relative

displacement, € and relative acceleration are

then given by equations (45) and (46) respec-
tively:

Aoe'emlnm1wotm1 (45)

n

€m

g, = n3m2m02aoe'§m2”mzmotmz . (46)

An alternative method is to assume that during
the first half cycle &= A = A v n =ny=ng

g = Sm = B,, remain constant. gubstitution of

these values in equations (37) through (41) and
(43) through (46) enables straight-forward cai-
culations, albeit of somewhat lesser accuracy.

COMPARISON OF RESULTS WITH EXACT SOLUTIONS FOR
SPECIAL CASGS

‘Mind11n (1] obtained exact solutions for
the following special cases:

a, Undamped 1inear spring (D= a = u » 0)

b, Kelvin mod2) (u=a =0

c. %1nea5 spg;ng with Coulomb damping
ui =

d. Undamped spring with cubic elasticity
(D=as= Og

For the assessment of the viability »f our
approximate svlution, in the general case, when
DAO, avk Oand uosk 0, we shall compare our
results of maximum displacement and accelera-
tion for the above four specfal cases, with

the exact solutions of Mindlin.

Case a, D=agmwy=0

We have B = 0, n = 1, Equations (45) and
{46) reduce to: g, = 4, = Eg and

2A0 = wozEs. Using Mindlin's notation:

dy = EgXy and G, = wozEst/g. we obtain tha

Em T W

the familiar exact solution:

d, = %%ﬂ (47)

2hK0
GO = —W- s <4B)

Here, W = Mg, dq is the maximum deflection of

an undamped 1inear spring mass system dropped
from a height h and G0 is the corresponding

maximum acceleration in number of g's on the
mass M.

Case b, p=oa=70

8 =0,n=1. Equations (45), (46) and
{42) reduce to:

e = E e-D“"otm1 (49)
m S

En = wozEse'Dwotm2 (50)
. 2

£, = 2DEgu, 51)

Here, the times tg; and t, are ootained from

equations (43) and (44) by setting 8 = D and
n=1. Using Mindlin's notation once again:
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Sy = €y¥p/9 When t 4 0, and Gy = EXp/g when
t 0, while dy © epXp. Thus.

d
am » o oty (52)
C

G
when t x 0: =R = 20 (83)

()
when t = tpo: gﬂ v o Moty (54)

- o

Equation (52) {s the familiar expression for
the logar{ithmic decrement of the amplitude of
a viscously damped spring mass system while
(53)]:nd (64) are identical with Midnlin's
results,

Case ¢, pue=D=20

ne=l, 4 =E, 8= %%~. From equation
(20) for D = O we have: S da/dt = - %&00’

which by direct integra‘ion leads to:

v g Bt . (55)

In this case, equations (45), (46) and (42)
reduce respectively to: '

-2 2a

£y = Ee (Fwotm M/ (Es = Fugtm) (56)

20 20

" 2. ~(fuw,t E. - 7wt )

€ = wy Ece (n o mz)( s T T orm2l (57)
2

o _ 4

EO = ‘ﬁ'uwo . (58)

The times b and te in equations (56) and

(57) may be obtained by simultancous solution
of equations (56) and (43) or (57) and (44)
respectively, A solution is possibie by an
{terative process of successive approximations.
However, for 1ightly damped system an approx-
imation is feasible, whereby a direct analy-
tical sulution is obtained. During the first

half cycle ﬁﬁuot << ES.A = E, (1f a 1s small),
and g = %%— << 1, permitting equations (43)
s

and (44) to be approximated by (59) and (60)
respectively:

nE
t9(woty;) = T (69)
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I
(0, tng) * 52 (50}

Similarly, equations (56) and (57) may be
approximated by (61) and (62):

20 2 NEg
-t £ arctg (=)
6 u Eee MEOMu p ol Za
m H H [ S (61)
2a
" 2 =X m('}t 2
£ Ee TE m
m B Fst T (62)

. 2a fEg
v o e TE; ATEO9 (g

The corresponding exact exprassions developed
by Mindlin are:

n -\/Esz + o . g (63)

€y = mozES - ool (64)

The gre hs in Figures 2 and 3 compare equations
(61) with (63) and (62) with (64). It can be
ceen from the graphs that good agreement exists
between the approximate solution and Mindlin's
exact solution,

Cased. D=a=0

when 8 = 0, and n = o equatione (45)
and (46) reduce to:

s (65)
g, ® B, = = 65
m Q nO
. .22 2 .
Ep = Mg W, Ay 7wy mE (66

Using Mindlin's notation:
g = AWOr . oy 2 (67)
7 s
Ko

We may transform equations (65) and (66) into
the form:

o .
3_21.%_=‘/%§[ 1311 =\ (60)
0

G 1 3 T\ 37
..._.Go Ny \/2- [\/1 +g B+ 1] w .8.8 (69)

e s L1
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Fig, 2 - Maximum relative displacement of a friction damped 1inear spring.
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fig. 3 - Maximum elative acceleration of a friction damped 1inear spring.
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These can be compared to Mind1in's solutions
for this case:

d
m, /2 , a @4
T g(\/ns 1) \/: (70)

8 — —
EEE\/%(‘/TTB S0 0 e e \fas (7

The approximations in equations (68) through
(71) are justified when the dimensionless
paraneter B 1s much greater than unity 21<< B).
Compariny equations (68) with (70) and (69)
with {71) we find that our approximate solu-
tion underestimates the maximum displacement,
and acceleration ratios, by a factor of
approximately 0,903 and 0,553 respectively for
very large values of the parameter B, The
underestimation 1s only 0.967 and 0.883 when

B = 1. Both results approach identity with
further decrease in the parameter B. This is
consistent with the basic limitation of the
Kryloff-Bogol{iuboff solution of the differen-
tial equation, whereby the accuracy is propor-

BKn2
tional to r = (ZW%—)'

Simplified Formulae for Lightly Damped Systems

When the damping ratios D and o are small,
say smaller than 0,2 (g€ << 1), we may approx-
imate A ~ A, and equations (40) and (41) as
well as (433 through (46) may be reduced into
simplified forms respectively:

B “B N w t
=A@ 000 sin(nomot) (72)
v 2 - t
£ a nOZAOe Bl %o cos(n u t +v) (73)
tq = T arctg (%—) (74)
m No%o o _
£, w =l arctg (—]—) (75)
me Nty k 330
-8 arctg(1/8.)
e = b otCHIE (76)
. 2 2, -Barctg(1/38 )
€y = W Ny Aoe . (77)
Here, v, Bo. and Ao are given by:
tgy = - L {78)

78,
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(79)

=
A, -\/%;[\/1 + JuEg - 1] (80)
ng * \f] + % quz (81)

Since most of the mechanical systems (including
packaging systems), are usually lightly damped,
the set of simplified equations (72) through

(81) may serve as a handy tooi for the designer,

We are interested mostly in the first half
cycle of the motion, {.e. the relative dis-
placement and acceleration pulses of the system
immediately after contact with the substrate.
Note that tp; and tyo are the rise times of

these pulses. Comparing equation (74) and (75)
we find that the acceleration pulse rise time
is shorter than the rise time of the displace-
ment pulse. The difference vanishes for
undamped systems when 8 = 0. Both rise times
are decreased by increasing damping, To find
the total duration time of the displacement
pulse T4 and acceleration pulse Ty we set in

equation (72) and (73) t = 14, t = T, respec-
tively. Since e = 0 when nyw,Ty = 1T and & = 0

when NgWaTy *+ Y = % we have for lightly damped
systems:
_ n
Tq = o (82)
I 1
5 - arctg(- 73—0 ) (83)
Ta® No%

As 8 > 0 and Ty € Ty we find aga‘n that the

acceleration pulse duration time is shorter
than the displacement pulse, The difference is
proportional o the combined damping ratio B
and vanishes when t'¢ system 1: undamped

(Bo = 0), Notice also that both Ty and 1, are

shorter for non-linear systems than for linear
systems by a factor:

e e B 7
/Mg = 3/ 3EE;E

Thus, the pulse duration time is reduced both
by increasing the nor-~linearity of the spring
and drop height.




CONCLUSION

A mcchanical model swnulating drops of
cushioned items in contatners, consisting of a
mass contained in an infinitely rigid frame
and restrained by two preloadad massless non-
11near springs, a dashpot and a dry frictfon
damper, was introduced., The differential
equation of motion of the system from the
instant of collision onto a hard surface after
a free fall from a height h onwards was solved
by the "1inearization principle" due to
Kryloff and Bogoliuboff [7]. This method
affords an approximate quasi-harmonic solution
of the non<linear differential equation of
motion with accuracy proportional to the
deviation of the spring force-deformation
curve from linearity, The study of the quasi-
harmonic motion whereby both the amplitude and
phase are functions of time, was facilitated
by selving the "linearized" equation of motion
as if 1t were an ordinary linear differential
equation. Particular attention was directed
to the study of the motion during the first
half cycle, e.g. displacement and acceleration
versus time pulses. To assess the accuracy of
the solution, a comparison of results with
special cases for which exact solutions are
known was conducted, It was found that the
general equations of our approximate solution
converge to the corresponding exact expressions
found by Mindiin [13, for undamped and vis-
cously damped 11inear springs, while deviation
from the exact solutions for friction damped
1{near springs and undamped springs with cubic
elasticity 1s well within requirements for
practical engineering problems, For expediency
of calculations in practical problems, simpli-
fied approximate formulae were developed sepa-
rately for 1ightly, medium and heavily damped
systems. These provide a ready to use tool for
conservative desia, It ‘'as found that for
heavily damped systems maximum acceleration is
reached at the instant of collision, falling
off to zero with time, Such systems are char-
acterized by sawtooth acceleration versus cime
rolses, with the initial maximum acceleration

rectly proportional to sys%em damping, (B),
shock excitation (Eg) and woe, f.e. inversely
proportional to the 1ss. Bulse A in Figure 4
is a representative example. For lightly
damped systems, most common in practice, maxi-
mum ac.eler-’ion {s reached during the first
half cycle puriod while the initial accelera-
tion 1% comrzcatively small., Such systems are
characterized by half sine acceleration versus
time pulses. Pulse B in Figure 4 is a repre-
sentative example. The graphs in Figures §
and 6 comprise examples of equations (76) and
(77} respectively for representative values of
Eg, o and D. From these we may conclude that
for 11ghtly damped systems, increasing the
non-11nearity of the springs (n) increases
maximum acceleration &y and decreases maximum
disp’acement ey, for a certain set of values
of Eg, o and D, Increasing shock excitation
Eg increases both ey and £y while increasing
damping (&, D) d..reases both ep and €y, It
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was shown by equations (82) and (83) that the
acceleration pulse duration time T, is shorter
than the corresponding displacemen% pulse time
1?. the difference is proportional to the dam-
ping ratio B, and vanishes when B, = 0, From
equations (73) and (75) we conclude that the
same is true for acceleration and displacement
pulse rise times, It car be shown also (from
equations (82), (74) and (83), (75)) that

Tq ~ tm) 2 tm and T4 - tp2 > ty2, 1.e. both
pulses are not symmetrical as rise times are
shorter than decay times, The difference is
proportional to the damping ratio Bp. Thus, we
have symmetrical and equal duration displace-
ment and acceleration pulses only when damping
is absent. Finally, 1t was shown that both
pulse duration times are shorter in non-linear
(hardening spring) systems than in linear sys-
tems .

For medium damped systems, the initial
acceleration and maximum acceleration during
the pulse period are approximately equal; thus,
such systems are characterized by trapezoidal
acceleration versus time pulse shapes. Pulse C
in Figure 4 is a representative example. To
find the damping ratfo By when &, = €, we
recall that during the first half cycle equa-
tions (44) and (46) may be approximated by:

tglne V1 = 85 uotyy) o)
0 - e V- af

B(3 - 48,%)

2 -
€y = nozwo Aye Bonowo tma (85)

Introducing wgtys from equation (84) into equa-
tion (85) and equating equations (85) and (42)

ylelds:
2y\f 2
-8 1-4 1 -
In(28,) = —=2—— arctg [( By ) > By
1 - 802 Bo(3 - 485 )
(86)

The value of B, satisfying equation (86) is
B, = 0.475. Curve D 1n Figure 4 is a represen-

tative example of an acceleration pulse when
the system is damped by this trade-off value of
Bo:

Increasing the preload of the system by
increasing precompression of the springs
decreases the values of Xy, u, a and D, while
Kgs v and the product KoX, are increased. Rig-

orous mathematical treatment of the influence
of varying precompression 1s outside the scope
of this article. It can be shown, however,

that the net effect of increasing precompression
1s a "harder" spring with reduced nonlinearity.
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Fig. 6 - Maximum relative displacement versus spring hardening ratio {(Equation 76).
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Fig. 6 - Maximum relative acceleration versus spring hardening ratio (Equation 77).

Usually this results in shorter pulse duration
times and increased values for maximum accel-
eration and displacement (&q, ey). Thus,
increasing precompression 1s usually harmful in
shock 1solation problems while the inverse pro-
blem of assuring activation of inertia mechan-
isms may benefit by increased precompression.
Note also that excessive precompression, on 1ts
own, may have a damaging effect on the product.

DEFINITION OF SYMBOLS*

A - relative displacement amplitude, or maxi-
mum spring deflection
B ~ Mindlin's dimensionless parameter for
undamped cubic elasticity systems
¢ = viscous damping coefficient
D - viscous damping ratio
do -~ maximum deflection of an undamped linear

spring mass system

*UnTess otherwise stated, symbols in the text
subscripted by o indicate initial undamped val-
ues of the variables, at the instant of colli-
sion (t = 0).
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[-%
L

h -

maximum deflection of & viscously damped
linear spring mass system

dimensionless shock excitation parameter
combined spring force of the system
friction (Coulomb) damping force
acceleration of gravity

maximum acceleration in g's of an undamped
1inear spring mass system

maximum acceleration in g's of a viscously
damped linear spring mass system

drop height

K1+ Kz - initia) spring constants of Tower and

KO"
K -

Ma
r -

upper springs respectively

combined initial spring rate constant of
the system

equivalent spring constant of the linear-
1zed system

mass

combined spring hardening coefficient of
the system




A

s o = spring hardening coefficients of wy

Jower and upper springs respectively

t - time

tml
tm2
W
X

Xb

Bm

Bm2

-

-

3

1

A3

L]

L]

14

displacement pulse rise time
acceleration pulse rise time
weight

relative displacement of mass M with
respect to the frame 1.

maxima) permissible relative displace-
ment of the mass M with respect to the
frame 2.

Coulomb friction parameter (dimension-
less friction damping ratio)

combined viscous and coulomb damping
ratio 3.

combined viscous and Coulomb damping
ratfo at the instant of maximum dis- 4
placement '

combined viscous and Coulomb damping
ratio at the instant of maximum accel-
eration

acceleration phase angle
velocity phase angle

dimensionless relative displacement
amplitude ratio 6.

undamped relative displacement amplitude
ratio

maximal relative displacement amplitude 7.
ratio

dimensionless relative displacement ratio
dimensionless relative acceleration

m?ximum dimensionless relative accelera-
tion

initial relative acceleration at
collision (t = 0)

phase angle

energy dissipating coefficient of the
1inearized system

dimensionless spring hardening ratio
acceleration pulse duration time
displacement pulse duration time
dummy variahle of integration

total phase angle

dimensionless frequency ratio

dimensionless frequency ratio at the
instant of maximum displacement

dimensionless frequency ratio at the
instant of maximum acceleration

angular velocity
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- natural angular velocity of an equivalent
1inear spring with spring ratfo K,

(wo = \[Ro/M)

REFERENCES

Mindlin, R. D., "Dynamics of Package
Cushioning®, Bell System Technical
Journal, 24, pp. 363-467, July-October 1945.

Mustin, G. S., Theary and Practice of
Cushion Design, The Shock and Vibration
Information Center, U. S. Dept. of Defense
SYM-2, 1968.

Janssen, R. R., Packaging Review, Vol. 73,
No. 79, p. 38, March 1953,

Kornhauser, M., "Prediction and Evaluation
of Sensitivity to Transient Accelerations”,
J. Of Applied Mechanics, pp. 371-380,
December 1954,

Newton, R. E., Fragility Assessment Theory
and Test Procedure, A publication of MTS
Systems Corporation, Box 24012, Minneapolis,
Minnesota.

Zell, G., "Vibration Testing of Resilient
Package Cushtoning Materiais", Picatinny
Arsenal Technical Report 3160, August 1964.

Kryloff, N. and Bogoliuboff, N., Introduc-
tion to Non-Linear Mechanics, Princeton
University Press, 1947 (Fifth printing 1959)

S e e e




qERE I QTR

TrITIHAINE, JB5 SR e k4 K

DYNAMICS ANALYSIS

STABILITY ANALYSIS AND RESPONSE CHARACTERISTICS OF
TWO-DEGREE OF FREEDOM NONLINEAR SYSTEMS®

M. Subudhi and J. R, Curreri
Brookhaven National Laboratory
Upton, New York

stable roots in this type of system.

sine sweep tests.

Understanding the behavior of nonlinear systems is important in laboratory test-
ing. Sine sweep-up and sweep-down tests are routinely done to reveal all of the
There are, however, certain types of soft-
ening-hardening restoring force characteristics for which sine sweep testing,
whether up or down, will not reveal all of the stable roots. In such cases, it

is important that the stable roots be identified so that proper testing procedures
are used and the test results are correctly avaluated,

The stability of a nonlinear two degree-of-freedom apring-mass system subjected
to a 8sinusoidal exciting force is examined.
rive at a get of coupled variational linear differential equations with peri-
odle coefficients. Floquet theory is used to obtain a characteristic equatioen.
The Routh-Hurwitz stability criterion is adopted to study the stable and unstable
reglons of the response curves. A computer program is developed to carry out the
entire analysis. Extensive information regarding stable zones of the system re-
sponse is described by means of nondimensional frequency~amplitude diagrams. The
results are examined in terws of inferring dynamic response characteristics for

The solution is perturbed to ar-

INTRODUCTION

In recent years, problems involving non-
linear characteristics have received much at-
tention. Many designs require an understanding
of the effects of nonlinear restoring elements
in multi-degree-of-freedom systems, It is char-
acteristic of such systems that soue of the
roots are stable while others are unstable. In
addition, it may be desirable to know the prox-
imity of the stable roots to the unstable re-
gions.

The behavior of nonlinear systems is espe-
cially important in laboratory testing. Sine
sweep~-up and sweep-down tests ave routinely done
to reveal all of the stable roots in this type
of system. There are, however, certain types of
softening-hardening restoring force characteris-
tics for which sine sweep testing, whether up or
down, will not reveal all of the stable roots
{1,2)}+. In such cases, it iw important that
the stable roots be identified so that proper
testing procedures are used and the test results

* Work performed under the auspices of the
United States Nuclear Regulatory Commission,

1+ Numbers in brackets designate references at
end of paper.
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are correctly evaluated. This paper shows the
results for some cases of softening-hardening
spring characteristice (such as the HTGR au-
clear core) for which it is necessary to iden-
tify the atable regions in order to correctly
interpret the results of a testing program.

Several investigators [3,4,5, and 6] have
studied the stability of nonlinear systems us-
ing different analytical approaches. Atkinson
[4] has reported on an analog computer solution
of two degree-of-freedom systems, He compares
these analog results with what he calls gus-
pected stabllity regions, as inferred by an ex~
tension of the one degree-of-freedom stability
criterion of Klotter and Pinney [7). However,
the predent method 18 found to be very general
for multi-degree-of-freedom aystems.

The question of stability may be defined by
determining whether or not a systew, once dias-
turbed, returns to its equilibrium state. Given
an equilibrium state of a physical system, whoae
stability we wish to study, we consider a state
near equilibrium and ask whether in the course
of time the system will tend towards the given
equilibrium state,
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In the atability astudy, the system is de-
scribed by the two nonlinear differentinl equa-
tions, The procedure follows the often used
definition for infinitesimal stability as de-
scribed by Stoker [3)., A perturbued solution is-
introduced. Thia results in the perturbed linear
“varintional" differential equations for &Xi(t).
Floquet theory ie used to solve the above varia-
tional equations with periodic coefficients,
This suggests that there is a solution to these
wquations of the form e®t¢  (t) which are peri-
odie functions and regsular “enough to be ex-
peuded in a Fourler series. Equating the co-
efficients of like independent functions gives
a set of algebraic equations in the Fourier co-
efficients from which, for a nontrivial solu-~
tion, a characteristic polynomial in the expo-
nent o ie obtained. The Routh=Hurwitz stabil-
ity criterion is employed to find the unstable
roots of the characteristic equation.

S«veral cases with noalinearity in elther
or both springs have been considered. Results
are compared with those obtained by Atkinson {4}
with an analog computer. Some diffevences are
digeussed. The gpacial case of rhe dynamic ab-
sorber ls also investigated to compare with the
weneral rusponse results obtained earlier by
Roberaon {8) and the Frahm~type dynamic sbsorber
that was studied graphically by Carter and Liu
[9). The paper also vhows that much more com-
plex jump phenomena could occur in gome kinds of
nonlinear systumg.

The results are displayed via plots between
the nondimensional frequency versus the ampli-
tube of each wass. This analysis is found to
be very useful in solving stability problems
without any prior knowledge of the stability of
any problem in rhe field of nonlinear mechanics.
In addition, a aore complete understanding can
be obtained of the response of multi-degree-of-
freedom nonlinear systems,

THE SYSTEM UNDER INVESTIGATION

The schematic dlagram for the more general
system being investigated is illustrated in
Figure 1. The governing equation of motion for
each mage 18 obtained in nondimensional form
and they are given as:

" L) 1
+ 3y - +
X+ CXy + (X Tap X)) - CpXy - K Xy}

%y xg) = F ginut

c (1)
" ‘-?; 1 5 + 3 "
+ X, & ¥ (x3 2 a2 x3) v}

AT X

! dx
where X = at

xi. i1, 2 represents nondimensional ab-
solute motion of masses

X, =X, - X

3 2 1
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CL = aondimensional viscous damping coeffi-
clent =

i
(klml) 172

o - nondimenéional nenlinesr spring con-
stant

X = kzlk1

L u,,/m1

F,iy,t » nondimensional torcing amplituda,
frequency and time varisbles, re-
gpectively

The Ritz average method [10] 18 used to ob-
tain an approximate solution to equacion (1).
As the initial approximacing functions for the
steody~stata response of the nounlincar system
shown in Figure 1, the follewing relations will
be used:

X, = A, sin wt + A, cos wt
1 1 2 )

X2 - Dl sin wt + DZ cos wt
Using the Ritz avernging procedure, the final
form of the algebraic equationé in terms of the
unknowns Ai and Di are givea an:

2 2
~w A, ~ C WA, + Al(ltElA ) + CZNC -

1 172 2
2
kG, (1#8,6%) = ¥

2 2
- AZ + clmAl + Az(ltslA ) - Czuc1 -

, 2
KG, (L+f,G°) = 0
()

c
2 1 K 2
-0 Dl -¥ w GZ +'§ Gl (11820 Y= 0

C
2 2 K 2
- D2 + i Glr+ ¥ 02 (ltBZG Y= 0
where

Af + a3

>
L4
[

Gy = D, ~ Ai

2 2 2
Gl + G2

By = 3/4 oy

The solution to these equations were carried
out by numerical wethods,

[2}

For the stabllity study, the damping terms
are neglected since these terms add complexi-
tiea without materially affecting the nature of
the stablility conclusien. The exact gsolution is
perturbed to investigate the nature of the solu-
tions near equilibrium. The variational equa-
tions in terms of the perturbation dxi are ob-
talned, These equatious are:

b
i
1

s b

iy

e

il




fL

" 2 2
ax1 + (1:3alxl) éxl - K (1::\azx3)6x3 «0

(4)

8x

K 2
y + X (1:30213) 613 -0

1f al). solutions of &X, are bounded, then X
are said to be stable, othervise they are uﬁ—
stable.

P SinQd1
Ky By kg, By

P

nn ye (1)

// ———— LINEAR
— ——— HARDENING
e memen= SOFTENING
R{y) » RESTORING FORCE
= ky £ By®
y © SPRING EXTENSION

’l
'd
¥lge 1 - Schematic model of mechanical sys-
tem and generslized spring fcrce

veraus spring extenaion character-
istice

i
-
’ ]

The above are known as coupled Hill's equu-
tions. The terms Xi are the actual solutionas.
Since we do not have any such solutions, we use
the approximate solutions ladicated by solving
equation (3). Mow subatituting (2) fato (4),
we arrive at two covpled linear equations with
Mathieu-type coefficients as given balow:

le + (61+4:1 Cont) 621 - (62+:2 CosT) GXZ
-0

(5)
o
dxz + (53+t3 Comt) 512 - (5b+tb Cost) 6x1
=0

2
d éxi

6-

vhere 86X, = ——=

1 ¢12
T = 2wt

2 2 2
6y = (1+uzalA1tzxszc1) ! (&™)
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2 2
) = a8 6]y / (W)

O

.3 20 ol
3 = 8, =% (1228,0)) / (4™

= 2 2 2
+ (2B1A1+2K8201) ! (bw™)

[ad
]

™
[ §

- 2 2
3 (28,6 / ()
€y =t =k (28,00 / (W)

From Floquet theory, the Mathieu equation
always possesses & fundamental set of soluticns
in which one solution is an even and the other
is an odd functiom of T. Since the above equa-
tious have periodic solutions and they are
regular for all values of T, the molutions of
(5) can be expressed in Fourier series such as:

6xi(~r) - .m[ni-:o (an1 cosnt + bni sin nt)] (6)

Insertion of these series solutions in (5)
leads to a set of recur-ence relations for apj
sad by by equating the coefficimnts of ideatical
terus ¢** Cosnt apd e*' SinnT. These ralations
are linear homogsneous algebraic equations. For
nontrivial solutions, the coefficlient determi-
nant must vanish. This results in a charscter-
istic equation in o, which must have either zero
or negative real parts to stable solutiom.

DISCUSSION

In the fiald of stability, Klotter and
Pinney [7] have entablished a comprehensive
stability criterion for a single degree-of-
fresdod system, This states that the maximum
amplitude of the rasponse must increase with the
increase of the sxciting force for a stable sys-
tem and decrease for one which is unstable,
Atkinson [4] used the above principle for a
two degree-of-freedom system for suapected
stable regions; but ha used the one degree-of-
freedom stability criterion in his investigation.
The present analysis confirms most of the stable
regions suspscted by him.

Figure 2 and 3 show the results for a case
with the auxiliary soring being nonlinear. The
positive (+) and negative (-~) signs on the plots
indicate the in-phase and out-of-phase responses
of the two masses respectively. For the soften-
ing cese, the results agree with the suspected
regions of Atkinson except for the positive loop

.
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at low fraquencies, According to Atkinsou, both
sidems of the loop are stadble while in the present
inveetigation, it i{s found that the inner branch
of the loop is unstable. However, from th:
plots of Atkinson it is clear that no computer
solution was obtained for this unstable branch,
Double absorber effects have been noticed, but
one of them is found to be unstable. In fact,
all of thesa cases of double absorber action
have shown only one of them to be mtable,

1
Q0 1] 0 18 20 25
FREQUENCY W

Fig., 2 - Response of main nass with aux-
iliary spring nonlinear
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Fig. 3 ~ Regponse of auxiliary mass with
auxiliary spring nonlinear

The dynamic absorber results are compared
with the previous work of Roberson [8] and
Carter and Liu [9) ae shown in Figure 4,
Roberson has defined the "forbidden region" as
the regions where the auxiliary spring extension
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Fig. 4 - Response of wain wass of dynamic
absorbers

or compression exceeds the critical defloction
of the aprimg at which the slope of the load-
deflection curve becomes zero. It is impliud
that this is an unstable region. The present
investigation has determined that the forbidden
region for a Roberson~-type system im 0,7<w>l.4
and w<0,2. For the system considered by Carter
and Liu, the present results determine the for-
bidden region to be 0.3<w>1.5. Thus it 18 found
that the dynamic absorber with the hardening
main spring together with the softening absor-
ber spring has a better suppression band, as
claimed by Carter amnd Liu,

Moreover, Roberson has defined the forbidden
region at such amplitudes where the slope of
the softening spring character!sticas goes to
zero. Arnold [10] has extended this to the
point of zero restoring force. Therefore, for
a cagse with o, w -0,05, this critical amplitude
18 4,47 for Atnold and 2.58 for Roberson. How-
cver, the present analysis determines that the
torbidden region can allow this critical ampli-
tude up to 3.36. Comparing this with the above
two cases, it 18 found that Roberson is more
conservative and the corresponding fotrdidden
region ies closer than Arnold. Ackinson has also
noticed similer kinds of results in his analog
computer analyais,

%igure £ shows a block of the HIGR core
which can translate and rotate. The equations
for this system are equivalent to the in-line
arrangex.mt showu in Figure 1. This type of
systei: shows that much wmore cowplex jump phenom-
ena could occur, Unless their characteristize
are uncergtood, the physical testing of such sys-
temu wa; not reveal all of the stable roots that
are vosuible, For the case of rocking with two
degrees of freedom, as in the response of the
HTGR nuclear core, & doftening-hardening charac-
teristic shows a first wode reaponse which 13 an

Lo s
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Fig., 5 - First mode response of a two degree-
of-freedom system with softening-
hardening main spring characteria-
tic

"s" curve. Of the five roots that are possible,
three are stable and two are unstable. How-
ever, thy upper stable root can never be at-
tained in any simple sine wave test, either by
sweeping uvn or down. On the other hand, the
upper root is attainable with the sine test in
conjunction with the proper transient exc.ta-
tion, as might be induced by ceismic distur-
bances.

For the hardening absorber spring, sine
sweep trats snow a jump down at high frequencies
and a jump up at low frequencies. This is in
accordance with ordinary one degree-of-freedom
thinking. By simply changing mass ratio.
or foreing function amplitude, only jump down
characteristics ecan bc revealed as shown 1in
Figure 6, vhether eweep up or doun testing is
done.
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APPLICATION OF RANDOM TIME DOMAIN*
ANALYSIS TO DYNAMIC FLIGHT MEASUREMENTS

8. R. Ibrahim
Department of Mechanical Enginecring and Mechanics
0Old Dominion University
Norfolk, VA 23508

In this paper, an approach is presented for modal identification of
aerospace structures from flight measurements, This approach is the
result of combining the "time domain" modal identification technigue
and the multiple channel random decrement technique. Also, a new
technique is presented to determine relative levels of excitation for
identified modes, These techniques are applied to flight data taken

gt i

from the B-1 bomber. Results are extremely encouraging.

INTRODUCTION

The solution of a variety of flight
vehicle dynamic res{xmse problems including
flutter, pogo, control/structure interactions,
and payload dynamic loads requires an
accurate knowledge of the dynamic character-
' "2g of vehicles under actual flight condi-
uuas.  Analytical models which are verified
by ground tests and latexr by flight tests are
used to treat tliese problems, However, the
degree to which flight data can be used to
determine the actual flight responses and,
hence, verify the quality of modeling techni-
ques has been limited, heretofore, by the
inability to extract good quality modal
information from the flight data, Although
natural frequencies can be obtained by
spectral analysis, good quality mode shapes
are not normally available because their
determination using ordinary methods
requires comparison of responses with
carefully-controlled and measgured input
forces--a luxury not available in flight, More
importantly, damping cannot be readily
determined for assessing stability marging
except in transient loading cases, and then
only for a limited number of modes.

The work reported in this paper
discusses the application of a potentially
powerful new technique to the analysis of
random flight data. The method, called the
"randomdec-time-domain' technique, over-
comes the above difficulties to provide
frequencies, damping, and with a sufficient
number of sensors, mode shapes for vehicles

*This work is part of a research project
supported by NASA's Langley Research
Center. Grant NSG 1459
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under random flight loads. Furthermore, it
determines automatically the number of modes
in the data through the use of a modal
confidence factor.

The "randomdec -time~domain'' technique
is based upon the combination of two recently
developed techniques, The first is the random
decrement method developed by Cole, [1}, for
obtaining equivalent free responses from
random forced responses. This method was
initially developed for single-channel, single~
mode data and later extended by Ibrahim, [2]
to retain phase relations for multiple-channe
correlation, The secnnd technique, used in
combination with the multiple-channel random-
decrement analysis for obtaining free
responses, is a time-domain dynamic data
analysis method developed by Ibrahim, [3-6].

The other important feature in this paper
is the development of an algorithm to determine
the relative modal contribution constant for
modes identified by the time -domain technique.
Since the time-domain technique identifies
modal vectors as eigenvectors, this informa-
tion does not indicate how strongly modes are
excited relative to each other. The algorithm
developed in this paper fits the identified modes
to the measured free-decay response, The
response is assumed to be a linear combination
of these modes. A set of constants resuits
from this fitting procedure. Each constant is
assoclated with one mode, thus, indicates the
level of excitation of this specific mode,

The procedure (random-decrement
analysis, time domain identification and
determination of the relative model contribution
constants) is applied to two channels of flight
data from the prototype B-1 borber. Although




]

Rl

=a

the method is apﬂlied here to single-channel,
the procedure will be the same for multiple
channels.

THEORY (Relative Modal Contribution
onstan

Starting with the random response
vector y [(t; and using the random decrement
technique [2], the free-decay response vector
for n stations x (t) can be determined,
From this free-dacay response, using time
domain identification 3—4?, the moda
parameters are identified, These parameters
are characteristic roots Ay =a; +1b; and
modal vectors ¥ where | is an index for
identified modes (j =1, 2 --- m), Madal
veciors occur in compﬁex conjugate pairs with
ai amplitude vector p_j and phase angle
vector aj

The free-decay responses can be
expressed as linear summation of these modes

as;
} 0

(n%X1) (n%2m) (2m % 1)

I (o

x(t)=[R Q| [

where X4 18 response of the ith station at
time t, -

Rij = pij cos(bjt + aij)’
Qij =Py sin(bjt + aij)’
¢, d are constants.

Emuation (1) is8 n  equations in 2m
unknowns. Repeating equation (1) a number of
times at different time intervals tl, tz, - tR

such that (n X £) is greater than 2m.
— -~

o~

X4 R, 9

%2 Ry & £

x| = d (2)
j.‘. p_‘ LEQ QU

(ng x 1) (nf X 2m) (2m % 1)

Equation (2) can be written as:
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and the relative modal contribution constant
for the jth mode will be:

,/ et 4+

max (czj + dzj)
1<§<m

"(RMCC)&' =

and the physical amplitudes of the jth mode at
all its n stations will be equal to "(RMCC)j"

X Ej'

EXPERIMENTAL RESULTS

Figures 1-a and 1-b show the {ree~decay
rasponses of the horizontal and vertical tail
accelerometers, These free~dec«y signals
were obtained b aé) lying the random decre-
ment technique {1, ]p, to the random respon:us
recorded during a test flight of a prototype of
the B-1 bomber. Sampling frequency was 300
cps. The free-decay signal for the horizontal
table was about 0.85 seconds (256 time
samples). For the vertical tail signal, the
record length was about 1.7 seconds (512 time
samples). Each set of data was used as input
to the time domain identification program. A
math model of 10 modes was used for the
horizontal tail. For the vertical tail 15 modes
math model was used. In each case the number
of modes in the math model was intentionally
larger than the number of modes excited in
each signal. This is to allow exits for noise.
The concept of modal confidence factor, MCF,
[6], which indicates the purity of the mode, was
used to separate good modes from nolse modes.

The Erocedure for the analysis is shown
in the block diagram of Figure 2.

Table 1. summarizes results obtained.
Four modes were identified for the horizontal
tail, and eight modes for the vertical tail. The
relative modal contribution constants "RMCC"
were calculated using the algorithm previously
discussed. Under the column designated notss,
frequencies and damping factors identified, by
other researchers who preferred not to be
referred to, using frequency domain and special
flutter testing techniques are listed.
Evidences of having more than one made in the
horizontal tail response are, blips on figure 1,
unequal time periods, and a beating like
phenomena. From the relative modal contribu-
tion factors listed in table 1, i{ is evident that
the time domain identification technique can

memwru““m o
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identify mories that have very low response
level, becaisge this technique does not depend
on manual chservation nng judgment during
identification process.

VEE ‘FICATION OF RESULTS

Figures 3 and 4 show comparison
between the test response and res):onse made
up by linear combination of identifled modes
using the calculated relative modal contribu-
tion constants. The fitted response was
calculated using equation (1), Agreement is
extremely good.

CONCLUSIONS

The combination of time domain identi-
fication, random decrement technique and the
concept of relative modal contribution constant
present a very powerful tool that can be very
effective in modal analysis of struccures from
flight measurement. The relative modal
contribution cunstant gives information on the
level of excitation of each individual mode,
Further worY needs to be done on transient
and random flight measurements with varying
mean, amplitude and structural properties.
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Fig. 2 - Analysis procedure.

TABLE 1
Identified Parameters
Structural Frequency Damping ' '
. Component Hz Factor "RMCC! "MCF Noteé
Horizontal tail. 4.81 0.068 6.4 99.5 a.617, 0.102
6.21 0.140 100.0 100.0
10.89 0.228 12,9 98.8
11.47 0.031 1.5 99.7
Vertical tail 4.06 0.062 3.0 99.8 3.9, 0.044
5.12 0.102 4.4 99.8
.M 0.109 62,2 99.7
. 8.22 0.112 100.0 99.8 8.4, 0,058
: 10.170 0.080 16.0 100.0
> i 12.07 0.082 6.2 99.7 11.65, 0.094
! 14,46 0.015 1.5 99.5
o 22.60 0.147 4.0 99.4
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ABSTRACT

L An analylical method is developed whereby a simple estimate can

R be obtained of the maximum dynamic response of light equipment

v attached to a structure subjected to ground motion. The natural fre-

: quency of the equipment, modeled as an undamped single-degree-of-
freedom system, is considered to be close or equal to one of the tatural
frequencies of the undamped N-degree-of-freedom structure. This esti-
mate provides a convenient, rational basis for the structural design of
the equipment and its instaflation,

The approach is based on the transient analysis of wned or slightly
detuned equipment-structure systems in which the mass of the equip-
ment is much smaller chan that of the structure. It is assumed that the
information available to the designer is a design spectrum for the
ground motion, fixed-base modal properties of the structure, and fixed-
base properties of the equipment, The results obtained are simple esti-
mates of the maximum acceleration and displacement of the equipment.
The method can also be used to treat closely spaced modes in structural
systems, where the square root of the sum of the squares is known 1o
be invalid.

! INTRODUCTION little interaction, in which case the conventional f{loor

The design of equipment to withstand dynamic load-
ing is a neglected feature of structural design. Equipment
is rarely designed with the same care as the building
within which it is housed. A rational approach to one
aspect of equipment design, that of relatively light equip-
ment, is presented here. The model considered is an
undamped N-degree of freedom structure to which is
attached an undamped single-degree-of-freedom com-
ponent. The frequency of the latter can be higher than
the fundamental frequency of the structure. In previous
work (1], we have described the response of such a sys-
tem to steady-state ground shaking. Significant interac-
tion effects were shown to occur in the case of tuning,
the situation in which the equipment frequency is close or
equal to one of the natural frequencies of the structuse.
If the equipment frequency is not tuned to a structural
frequency, the response is roughly the superposition of
the structural response and the equipment response with

spectrum method should be valid for transient problems.
If, on the other hand, the equipment frequency is tuned
to a structural frequency, it was found that for the com-
bined system there are two closely spaced frequencies on
either side of the tuning frequency around which a band
of high amplification appears, offering a substantial target
for sympathetic oscillation. The significant equipment-
structure interaction in this case means that the conven-
tional floor spectrum method, which ignotes that interac-
tion, will not be valid for the transient unalysis problem.

In this paper the previous research is extended to
transient analysis of the equipment-siructure interaction
problem. The peak response of the equipment is
estimated by utilizing a design spectrum for a specified
input to the structure, and fixed-base dynamic properties
of the structure alone and of the equipment alone. By
taking advantage of the mathematical structure of the
equations and of asymplotic methods made possible by
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the smaliness of the equipment mass in comparison with
the structure muss, we obtain simple resulls that are valid
for tuned and nearly tuned systems,

The rationale for using design spectrum methods is
that they are inexpensive and o a certain extent incor.
porate the probaubilistic nature of the problem, ie., the
uncertainty involved in specifying the structural parame.
ters and the ground shock input. These uncertainties are
accounted for in constructing a design spectrum and also
in the way that the maximum values in each mode are
combined to predict the maximum for the entire system.

For light equipment, the results obtained can be
implemented easily and efficiently by a designer. A
surprising feature of the analysis is its extreme simplicity;
namely, if the response spectrum for the ground motion
is available, the response spectrum for the equipment can
be calculated merely by multiplying the former by an
amplification factor.

ANALYSIS OF EQUIPMENT-STRUCTURE SYSTEMS

In this section we formulate the equations of motion
governing the response of a general undamped N-
degree-of-freedom structure to which is attached equip-
ment modeled as an undamped single-degree-of-freedom
oscillator (Figure 1),

§-D-0=F
EQUIPMENT

a——-w(f) n
l K ?4u(t)

N-D-0-F
STRUCTURE

N

F777777777777777
— Uq(f)
GROUND MOTION

FIGURE 1 EQUIPMENT-STRUCTURE SYSTEM

The equations of motion of the N-degree-of-
freedom structural system take the form

N N
3 (M U+ KUY = 3 KRy + Fe, 8]
Jor J=
where j=1,2,..N and M, and K, are the mass and
stiffness matrices, respectively. The vector R, is a vector
of influence coefficients introduced to couple the actual
ground motion u,(r) to the structure, and e a vector
whose components are zero at every degree of freedom
except the one to which the equipment is attached,
denoted by the index r, where it takes unit value. The
term F is the interaction force between the equipment
and the structure,

The natural frequency 1, and mode shape ¢/ of the
n'"mode (n=1,2,....N) are obtained from the equations

172

n,an,,m,"-aéx,,m;' (2)

I=\

where /=1,2,...N. Equation (1) in modal coordinates Is

G g = T OM /M, 3)
) bt

where k=1,2,...,N and
NN
M= ST 0r0iM,

1m| fel

N
F =3 KRy + Fe,
1)

with M, the generalized mass. The Laplace transform of
the siructural response U,{r) is given by

1] ——e
Y E M, (p1+ 0] @

where

_ N -
Eﬁ'i:KjRﬂl+fE
IL]}
where p is the Laplace transform parameter and a bar
above a function denotes its Laplace transform. The
corresponding equation of motion for the equipment dis-
placement u is

—mli = F = k(u=-0U,) (5)
or, in Luplace transforms,
i = L G- T) (6)
m

where m and & are the mass and stiffness of the equip-
menl, respectively. A relutionship between u and U, is
obtained from Eq. (6) in the form

(PP +owDii = w? U, N

which, from Eq. (4), can be written as
N _ N
3 of0HFe+ Y KRiE,]
lw|

T+ e) =t § 2
it "’,?:.i. Mg+ 0D

Since F=—mp'i, F can be eliminated. The final
trunsformed equation for the equipment response is then

N mpluid)rd)
|+ + Y
o E. M, i+ 0D

NN
X ¢TI Y KR
-l s =1 I= = g
P ey ®
The expression ¥ K,0* can be written as Q3 ¥ M0
thus the solution for & for the muiti-degree-of-freedom
system takes the form
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The zeroes of the term in brackets on the left-hand'

side of the equation must be determined to Invert the
Luplace transform by residue theory. These zeroes are
the poles of the wransfer function for the equipment
response. The case considered here is that illustrated in
Fig. 2, where the equipment frequency Is close Lo a struc-
tural frequency, say {1, The two expressions In the
brackets on the left-hand side of Eq. (9) have been plot-
ted sepurately; p was replaced by /2 and the graph of the
second function and the negative of the first function in
the bracketed expression were then drawn. The plot for
the first function Is & simple quadratic in 2, zero when
01 =w, the natural frequency of the equipment. The plot
for the summation is a complicated curve that reaches
+ o0 when {1=1(1, and k=1,2,.,N, the natural frequen-
cies of the structure. Two such curves have been plot-
ted, one for equipment of small mass, and another for
equipment of larger mass.

@ LOCATION OF ROLES WiE
[rinbradadeiitring

& LIKATION DF POLES WHEN
€0UPNENT wASE 1S HOT SALL

FIGURE 2 LOCATION OF POLES OF EQUIPMENT
RESPONSE TRANSFER FUNCTION

The values of 11 at the intersections of these two
curves locate the zeroes in the bracketed expression,
where equipment-structure interaction is considered.
When the equipment mass is small, these poles, all of
which are simple, appear near the natural frequencies of
the structure. Two closely spaced poles, referred to
herein as tuning poles, are located near the equipment
frequency and the frequency of the structure to which the
equipment is nearly tuned, one below these frequencies
and one above them as shown in the figure. These two
poles coalesce into a double pole when w= 0, and m—0.
Thus, the contribution to the sum of the residues at all
poles is dominated by the residues associated with the
two tuning poles. The contribution of the summation
term 10 the residues at these two poles is dominated by
the term where & = n since the denominator of that term
is nearly zero. Hence, in the region of p=iw, Eq. (9) can
be approximated by
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w’ )

—m e
M,,/(@")' ple i}

,+ ﬂ.? 'S.;”)iw OIMRIM, | &

i 1p? + wd) + p?

(10)

This expression Is identical to that for & two-degree-of-
frecdom sysiem, as shown in Fig. 3. The equivalent
expression for the system shown in thal figure Is

1()1
T4 wd) 4 LA
Tl +wd) "yp?+n’ [/r’+(l’)“" (1
where y=m/M Is the mass ratio. When we compare this
expression 10 Eq. (10), we see that the effective mass
ratio is

y - W 12
und the effective ground motion
uflt = Cly, (13)
whete
Cr=r % 3 OIMR /M, (14)

im] el

K Kk 2

f e =EW

FIGURE 3 TWO-DEGREE-OF-FREEDOM SYSTEM

In the subsequent development, the contribution of
the residues from the tuning poles (which are near
p=1w) will be obtained from an analysis of the equivalent
two-degree-of-freedom system defined by the above
equations. The contributions at the other (N—1) poles
are straightforward and will be considered after the two-
degree-of-freedom  analysis has been completed.
Although it is not essential that an equivalent two-
degree-of-freedom system be considered, since it is only
conceptual and introduces no further approximations
beyond those made in passing from Eq. (9) 10 Eq. (10),
the following development will be for such a system in
order to simplify notation. We will use the notation of
expression (11). Thus, 0 will refer to 0,, and » and «,
to ¥/’ and uf”, as defined in Eqs. (12) and (13).

The transformed equipment acceleration #(p) for
the equivalent two-degree-of-freedom system takes. from
Eq. (11), the form

i = NGV D (IR, s
where
N () = (14+6) (16)

and

D(p) = p*+w?pd 24526+ +w* (1 +£H)2 an
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In the above ¢ = ({1-w)/u is the detuning parameter., The
following discussion concentrates on equipment accelera-

lion: results for equipment displacement can be easily
developed.

The nature of the solution strongly depends on the
location of the zoroes of the denominator D(p). Thesc
are glven by

H
p=z iu((l+-§-+€+~{2—)
7 PR
2 yrgiiyere e 020 ()

Since the analysis is concerned with light equipment
which Is only slightly detuned, we take y” and ¢ to be of
the same order and << 1. Thus, to dominant order, the
four roots are

pramioll+ £ £ Lo red?) 19)

and the corresponding complex conjugates of p, and p,.

The formal inversion of the transform expression
(15) is

oL NPy ”
(H) o .‘f F(%)' i (p)erdp (20)
where I' is a suitable Bromwich path. If 4,(p) is taken to
be 1, then the inversion directly yields Green's function
iig(n) for the solution, the essential component of the
subsequent analysis. The complete solution for the
equipment acceleration for given ground motion i, (1) will
take the form

[’
il -f ligU—=7)ii, (r)dr (21)

[}
Green’s function will be obtained by residue theory, since
there are ne branch cuts in the p plane. The inversion of
the transformed Green's function is obtained by evaluat-
ing the residues at each pole, Eq. (19), and collecting

complex conjugate terms in pairs. To dominant order,

lig(1) = — cosw! sinmt (¢}

—
(y+EH"
where
o= (1+&Dw = (w+N)/2
= (y+E) %2

This function represents an undamped beai solution with
the beat frequency n much smaller than the tuning fre-
quency w.

APPLICATION TO EQUIPMENT MOUNTING DESIGN

The results given in Egs. (21) and (22) could in
principle be used by a designer of equipment mounting if
a specified ground acceleration history were available to
estimate the forces that would develop in the equipment
or its mounting. However, such information is not
readily available and the numerical evaluation of these
integrais may be inconvenient during the design process.
Commonly, a designer begins with a design spectrum that
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may be specified by 4 code or determined by averaging
several possible inputs. We are thus interested in deter-
mining the extent 1o which Eqs. (21) and (22) can be
used to obtain estimates of maximum acceleration when
the information avallable is the response spectrum of the
ground motion k,. In a previous paper for the undamped
perfectly tuned case {2) we considered a number of alter-
native approachies. Of these the approach termed the
amplified ground motlon spectrum method wus found to
be the only practical procedure. This can be extended
readily to the present situation.

When Green's function, Eq. (22), is substituted into
Eq. (21), the response is givci by

i) = -—-(—;:‘-;;—}f;_{ii,(r)sinn(l-r)cos&(l-'r)dr (23)
The term sinn(1~-7) is expanded, leading to
B() e -
() g™ sin(n/~0)
4

1 2
+ [f ii,(r)sinnrcos&(t—r)dr] l (24)
0

) 2
fii,,(r)cosn'rcosdo(l-r)dr]
)

where

fii,,(r)sinnrcosd:(r~r)dr
# = tan~! ? (25)

J' ii, (#)cosnr cosw (r—r)dr
]

We are interested in situations where the ground motion
has prescribed finite duration and for those frequencies w
where the maximum response of a single-degree-of-
freedom oscillator, ie. the response spectrum, is
achieved late in or afier the termination of the ground
motion. These frequencies correspond to peaks in the
response spectrum. Design spectra, reflecting the proba-
bilistic motion of the input, correspond closely to the
peaks of actual spectra and thus presuppose late-occurring
maxima, When ground motion is caused by a blast,
which is of short duration, it is likely that the maxima of
equipment response will occur long after the ground
motion has ended.

Thus, for ns=2mw/T << 1, where ¢, is the duration
of the ground motion and T is the beat period of the sys-
tem, the first integral in Eq. (24) can be approximated by

J iin) cosarlr—nrdr (26)
[

and the second neglected since sinys will be bounded by
nt; << 1, and i, =0 for ¢>1. For nr<<1, then, we
have

ﬁﬁsinm{ﬁk(r)coﬁ(l—r)df Q@n

() =~
The term in the integral is a function that oscillates with
frequency @, which is high compared 10 », and a max-
imum of that will nearly coincide with the maximum of
sinnr. Thus, an estimate of the maximum value of ii(¢) is
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[Hmee = Tyf—;—,—); nwxl{li.(l)curado(wrh/:l (28)

We recognize that
1
muxlf i () cosali—~r)dr|
(1}

Is the undamped relative velocily response spectrum,
which is very ncarly the pscudo-velocity response spec-
trum §,(@a), for a single-degree-of-freedom system with
frequency @. Accordingly, we obtain the following esti-
mate of maximum uceeleration

" @ e

[id ]y = ‘(_"Y—';‘_f;)—; 5y lw) (29)
If the displacement and pseudo-aecelerstion undamped
response specira us functions of frequency w are denoled
by Sp(w) and S,(w) and since Sp=8,/w und S, =w$;,
then alternative estimates are

I“[mu - ‘Sl)(“;,l'_' (&]1)]
(y+£9)
and
. Sl
i may ™ - o 3
lifloe = ™ )

If a designer is given only the response spectrum of the
ground motion, the maximum displacement and foree in
the cquipment can be estimated by using these specirn
amplified by the fuctor (y+¢1)°". These remarks refer to
the equivalent (wo-degrec-of-freedom  system.  Results
for the general syslem are obtained by utilizing the fac-
tors in Egs. (12), (13), and (14).

The simplicity of the result can be explained on phy-
sical grounds. In weakly coupled systems with the sume
frequency, the response of the system involves a perfect
energy exchange between each component at a beat fre-
quency much lower than the natural frequency of cach
component. The same phenomenon -- a classical beat
phenomenon -~ occurs here. The coupling is weak
because the ratio of equipment mass to structure mass is
small.

When a structure is subjected 1o u ground motion,
the wvelocity imparted to the structure is mass-
independent and determined only by the ground motion.
Thus, if the same ground motion were applied directly to
tuned equipment, the sume velocity would be transmitied
10 it. Kinetic energy, on the other hand. is proportional to
the mass of the system excited: in cquipment. that
energy would be much smaller than in a structure, How-
ever, if the equipment were attached (o a structure and
the structure subjected to a ground motion, the kinetic
energy imparted to the latter would subsequently be
wholly transmitted (o the equipment, if tuned, and the
velocily imparted would be amplified by the reciprocal of
the square root of the mass ratio.

Damping is clearly important in this process because
the encrgy transfer requires many cycles and much of the
kinetic energy in a damped system could be dissipated
before being transmitted. The transient analysis of
damped tuned and nearly tuned systems will be
developed in future work.
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COMPLETE SOLUTION INCLUDING OTHER POLES

Equations (30) and (31) give the dominant equip-
ment response, corresponding to the contributions irom
the tuning poles, but contributions from the other poles
cun be eusily computed. To do so, recall that the nontun-
ing poles of Eq. (9) are close to their location for the
structure alone, us indicuted in Fig. 2. The poles for the
m™ nontuned mode are nearly

p- ok ifi, (32)

It we evaluate the residues and drop negligible terms, we
oblin, to dominant order, the contribution from the m™
structure poles as

"R

— )
1-(Q,,/w)?

\

wsingd .t 33

where m = n,

Nondominant contributions of the same order from the
tuning poles are
¢ — S L )
’"I_:l (w7 w sinaw!
men
where (" is defined in Eq. (14). The complete solution
for the response of the equipment then takes the form

i ~ om
filt) = _!: i ) .,,2.1 l—m 1, sin{}, (1~1)

ma

kS —~n

+,,Z_| -I;Tum,—msmw(l—r)+u(;(l—-r) dr (35)

nen

where ii, (1) is given in Eq. (22).

The character of the two parts of the solution in Eq.
(35) differs. The contribulions from the nontuning poles
and the nondominant contributions from the tuning poles
arc conventional and would attain their peaks during the
ground excitation or shortly thereafter. The dominant
response from the tuning poles, on the other hand, is
controlled by the cnergy transfer from the structure to
the equipment through beating, which takes a relatively
long time. The lalter contribution achieves its peak value
considerably later than the former and they should be
treated as separate maxima. The maximum response
from the nondominant contributions can be estimated by
the vonventional square root of the sum of squares
method.

Accordingly. the estimate of the maximum accelera-
tion has two parts, namely, an early peak given by

X cn 2
i = : 5,(n,)
|“|n.\ mz_l |"‘(“",/Ut)2 A(
W

L

v —5 | sitw) (36)
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and a later peak, from the dominant contribution of the
tuning poles, given by

1

wt+il,
T

2

il

a7

The detuning parameter is ¢ = (£],~w)/w, and /' Is given
by Eq. (12). For light equipment and closely tuned sys-
tems, the second peak is likely to be more important,
However, the early peak may be the larger and both
should therefore be evaluated.

The methods developed here can also be used lo
estimale the peak response of grossly detuned systems,
i.¢., where the equipment frequency is far from all siruc-
tural frequencies, and will be given in future work. The
advantages of this approach are its simplicity and adupta-
bility for practical application, A great deal of computa-
tional effort is avoided since time history analyses need
not be performed. The equipment-siructure system need
nolt be analyzed as an N+1-degree-of-freedom system
either by modal or matrix-time-marching methods, and
errors in estimates of peak response due to the possible
unreliability of numerical time-integration schemes, or to
uncertainty as to the appropriate procedure for summing
the contributions of the two closely spaced modes, ara
thereby avoided. For tuned and nearly tuned systems the
method accounts for the important effect, neglected in
the floor spectrum method, of equipment-structure
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Interaction. The method advanced here does not require
new information to be generated. Dutu available from
the building design alone, the equipment alone, and the
ground shock spectra are used.
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A COMPUTATIONAL MODEL DESCRIBING THE INITIATION OF
SILVER ACETYLIDE-SILVER NITRATE EXPLOSIVE BY AN INTENSE LIGHT SOURCE#*

Floyd H. Mathews
Sandin Laboratories t
Albuquerque, New Mexico 87185

The surface initiation of Silver Acetylide-Silver Nitrate explosive
is studied. 1Initiation occurs when the explosive is exposed to
irradiation produced by an electrical discharge through an array of
tungsten wires, each surrounded by an air<filled Pyrex tube, The
initiation process is modeled by first calculating the wire heating
and subsequent arc breakdowa. Then the arc energy is allowed to
reradiate toward the explosive surface using a characteristic relax-
ation time. Finally the thormal initiation of the explosive surface
is modeled as the conductive transfer of heat through a surface layer
of inert explosive which had previously been darkened by exposure to

the sun. Initiation occurs when active explosive reaches a critical
temperature. A number of unknown parameters are accommodated by
normalizing the calculation to agree with the time delay before
firing which was measured during a single experiment.

Reasonable agreement is obtained between calculated and measured
values of the current time history during the electrical discharge,
and a similar agreement is obtained between measured and calculated
irradiance time histories. Calculated explosive initiation times are
also reasonably close to measured values over a range of test
conditions. Parametric studies indicate that the initiated area may
be increased by a factor of 3.5 by modifications to the electrical
circuit while maintaining present initiation conditions.

INTRODUCTION

Laboratory nuclear effects test-
ing allows the study of weapon response
to simulated exoutmospheric x-ray
encounters, Coatings of the primary
explosive Silver Acetylide-Silver
Nitrate (SASN) are employed in our
laboratory to study the mechanical
response of structures to externally
applied impulsive loads [1-4]. This
process involves spray painting the
surface to be loaded with carefully
controlled thin layers of explosive.

The explosive is then exposed to
sunlight (suntanning) causing a surface
darkening of the outer layer of the
explosive. When exposed to an intense
flash of light the explosive is
detonated nearly simultaneously on its
surface, and an impulse lond is imparted
to the structure within a few micro-
geconds, The suntanned explosive
exhibits & more uniform initiation
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pattern than exhibited by untreated
white explosive. The local impulse
value can be varied over a wide range by
appropriate local variations of the
explosive mass. Typical values of
explosive areml density are 300g/m? to
yield an impulse of ~ 200 Pa - s,

Depending upon the expected damage
modes of the structure, initiation

*The submitted manuscript has been
authored by a contractor of the United
States Govermment under contract,
Accordingly the United Statea Govern-
ment retains a nonexclusive, royalty-
free license to publish or reproduce the
published form of this contribution, or
allow others to do so, for United States
Government purposes.

fA U.S. Department of Energy Facility.
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Fig. 1 - Light source and explosive coated structure

simultaneity over widely separated the design of light sources applied to E
locations un the explosive surface may testing of various structures,
be permitted to scatter over a range E
from 1.0 to about 10 us. However, in a
small local arez it is desirable to INITIATION PROCESS .
produce initiation within a scatter of
0.1 to 1.0 usec. One of five units in the modular
light source and its capacitor discharge
In this paper the initiation power supply is illustrated schematical-
prucess is studied. First an analytical ly in Figure } and has been described
3 model is constructed describing the elsewhere (5]. A typical erperiment
£ electrical discharge light source and involves discharging the capacitor which
: then this computatic 3n coupled to a is initially churged to 40 kV tnrough
g model of the process which heats the an array of five 0,076 mw diameter
explosive to its initiation temperature. tungsien wires 609 mm long and spaced
This model is then made tu agree with a 90 mm apart. The tungstzn wires are
single experimental point in order to surrounded by heavy wall Pyrex tubes of
normalize for physical parameters which 12.7 mm bor . Depending upon test
are not accuratecly known. Useful, requirements many parameters may be
though not exact, agreement is obtained varied. These include wire spacing,
when comparison ir made with additional wire length, nuwber of capacitor modules,
experimental measurements made for curvature of the light array and the use
different conditions. Finally, studies of white paper reflectors. The setup
= are made of various parameters which cau shown in Figure 1 is typical of all
e be altered through design of the light experiments described in this paper and
source. Conclusions resulving from is fairly typical of a structural
thege studies have proven useful during testing arrangement. The explosive
178
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Fig. 2 - Current and light waveforms

surface is ordinarily placed within

approximately one wire spacing from

the light source in order to realize
a reasonably uniform light flux and

scceptably small radiant loss at the
edges.

When the capacitor bank is
triggered, the current waveform follows
the time history illustrated schema-
tically in Figure 2, During the arc
delay, all current passes through the
tungsten wire, causing it to heat from
the solid state up through the onset of
vaporization. Corresponding nearly to
the instant of wire surface vaporiza-
tion, the current transfers from the
high resistance wire to an arc which
forms in the surrounding air and grows
to fill the entire Pyrex envelope,
During the period of arc growth the
circult resistance drops to a low value
resulting in a current waveform
characterigtic of an underdamped
discharge, Evel with the rapidly
decreasing resistance as current trans-
ters from the wire to the are, curient
is shared apyrovimately uniformly
between the «ifferent parallel arcs
which form within a jitter of 1 us,
Glags tubes merve to confine the arc,
thus increasing circuit resistance in
comparison to an unconfined discharge,
Shattering is avoided if peak currents
are below 30 k amps in each arc.

Energy is radiated in all
directions #i & rate dependent uponr the
arc energy density and the arc size,

The resulting radiated light energy
follows the current waveform illustrated
in Figure 2, lagging somewhat behind as
a result of energy storage in the heated
gas. Radiated energy is lost through
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absorption in the Pyrex envelopes, and
iz lost to the sides and to the rear of
the fixture. Quartz envelopes improve
the efficiency; however, the tubes are
frequently damaged by the explosive
blast and better economy is achieved by
using Pyrex, We have assumed that 40%
of the energy emitted by the arc is
absorbed in the explosive and that this
energy is distributed uniformly over an
area equal to the planar area of the
light source.

The thermal process believed to
cause initiation of the explosive is
illustrated in Figure 3, The energy
flux radiated by the light source is
incident upon the outer surface of
darkened explosive, Because of a photo
reaction which occurred during exposure
to sunlight, this "suntanned"” layer is
inert to an unknown small depth h,
Since most of the energy is deposited
on the outer surface, with a small
reflective and radiative loss, only
those losses associnted with geometry,
i.e,, edge and rear losses, significant-
ly reduce the energy flux, During the
small interval while energy is incident
upon the receiver surface, but before
the explosive has detonated, energy is
cunducted thermally from the surface
through the inert layer toward the
active explosive. Eventually the active
explosive is heated until a sufficient-
ly high temperature is reached to cause
initiation. Somewhat arbitrarily a
temperature rise of 200°C above ambient
is selected to represent the value
causing thermal initiation [6] rather
than the higher values suggested for
thermally induced cookoff [1] (260°C)
or the value suggested by Roth [7] for
pulse heatling reactions (~600°C) of
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lead azide. Normalization of computed
results to an experimentally measured
tiring delay which will be discussed
later is intended to compensate for a
luck of detailed knowledge of thia
important parameter,

In the past section, the physical
processes which cause explogive
initiation have been described. 1In the
next section details of a computational
model of this process will be discussed.
In formulating this model the goal is to
provide a means for investigating the
influence of various physical parameters
upon the time delay between arc forma-
tion and explosive output. With this
limited gonl, the difficult task of
accurately confirming details of the
theory is avoided. Instead, estimated
values for many of the required physical
variables are used and the computed
results are normalized to agree with a
particular measurement. Thus by
adjusting a single parameter, i,e.,, the
unknown thickness of the inert layer of
suntanned exploaive, agreement is forced
by using a single experimental measure-
ment, The adequacy of the normalized
theory may then be checked by comparison
with other experimental measurements.
Thig type of empirical thecry is
formulated in the next section.
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COMPUTATIONAL MODEL

The resistance behavior of wire
heated to explosion by a rapid
electrical discharge has been
extensively studied by Tucker [8,9].
Although his vacuum conditions are not
exactly duplicated in our arrangement,
the requirement of short time scales,
i.e., a few 10's of u seconds are met
and the requirement of adiabatic heating
during the electrical discharge is
approximately correct. Therefore, the
analytical formulation in which the
resistivity of tungsten wire p(t) varies
during the electrical discharge is used
in wcecordance with the value of specific
uction g(t) as the discharge occurs,
Specific action 1s defined by

ﬁzdt

g(t) = ““;5—— (1)

where i is the current, A is the wire
area and t is the time, Tucker gives
approximate analytical expressions for
tungsten in [9) which allow calculation
of the resistivity of the wire through-
out the discharyge. This process
includes (1) a so0lid heating phase,

(2) a solid to liquid transition, (3) a
liguid heating phase, and (4) a liquid
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vapor transition. Thus the variable
resistance offered by the wire during
the arc delay period is calculated
directly as a function of action. In
functional lorm

my(o) - 24 - olgw] )

where Rw(t) is the time dependent wire

resistance, and ! is the wire length,
With this information and the circuit

equation,
L
di idt

L+ (RB+Rw(t))i + —97?—— =Y (3)

where L, RB‘ c, V0 are the circuit

inductance, bank resistance, capacitance,
and initial voltage respectively.
Numerical solution of these equations
yields the result of Figure 4 for a
typical case. When these conditions are
repeated experimentally, we find that
the current waveforms agree until
formation of the arc at 6.3 us, which
corresponds to the instant when the
tungsten wire is just vaporizing on its
surface. We conclude that arc formatio:
starts at a specific action of 42500
amp? s/mm*.

Once an arc has formed in the gas
surrounding the tungsten wire, the
resisiance afforded by the ionized air
is much less than that of the partially
vaporized wire. Therefore wire
resistance is dropped from the calcul-
ation and replaced by the arc resistance,

An appropriate theory for air resistance
during arc formation was not found,
Instead, in order to continue the calcu-
lation, data from [10] was employed which
npplies specifically for xenon, With
thie approximation, the resistance of
each arc path is given by’

. 9.1274
Ry = (4)

where L is the arc length in mm, D is
the arc diameter in mm, and RA is the

resistance of a single arc in ohms.
t

The arc growth was observed as a
function of time using a streaking
camera to obtain the data illustrated
in Figure 5. Arc growth rate was
found to be a function of initial charge
voltage as illustrated in Figure 6,

This data approximated a straight line
with the equation

4D _ (110000 + 10.89 vo)"‘““/s (5)

where 14,000 s VO < 45,000 volts,

D < 12.7 mm and £ = 610 mm and dD/dt is
the rate of arc growth, We assume
further that after the arc expands to
the tube wall, then the arc remains at
the tube diameter. Note that injection
of this empi.ical equation severely
restricts the theory since the desirable
cause and effect relationship between
current and arc size is not permitted.

The arc radiation process is

a
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Fig. 4 - Computed current time waveform during arc delay
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Fig.

modeled after the methods given in
{11]) by Hug et. al., who found that a
characteristic relaxation time tr could

be defined for various gases radiating
energy during an erc discharge. For our
tube geometry using air at 85 kPa their
results suggest that the relaxation time

tr is given in terms of the arc diameter

by

t, =097 x10°%Dp . (6)

The rate of energy increase E in the arc
is given by

df _ .2, _ E(t)
at = 1R ‘7’
r
where the singularity at D = 0 is
avoided because the arc must begin at
the finite tungsten wire diameter. The

term E(t)/tr represents the time

dependent power leaving the arc through
radiation, Integration of Eguation 7
from the initial zero energy state in
the arc allows computation of the time
history of the radiated energy. The
energy flux F(t) reaching the target
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explosive surface is given by

F(t) = n

(8)

where n is the source efficiency and AS

is source avea. Values of n were
estimated to be 0.4 when no reflector
is used behind the light array and a
flat target equal in area to the light
source was placed one tube spacing in
front of the array. This estimate,
which accounts only for geometrical
losses, was justified by the very high
electrical to optical efficiency
measured in [12],

This flux may now be employed to
calculate the internal temperature rise
resulting from conduction of Leat
through the inerted explosive layer to
the interface between inactive and
active explosive. This calculation is
made by superpositinn of the solution
given in [13] for the step application
of a heat flux to a conducting half
space. Then
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TCh,t) = Eféﬁi jery 1N (9)
2/at

where T(h,t) is the temperature increase
at interior location h, o i8 the thermal
diffusivity of the inerted explosive and
K is the thermal conductivity. Repre-
sentative values of 168, mm?/s for
diffugivity and 0.02 J/(s °K mm) for
conductivity were assumed.

Only one parameter remains unknown,
the thickness of inert material h. The
delay period from arc formation until
explosive firing was measured by
spraying a 300 g/m?® coating ~0.55 mm
thick over a quartz pressure gage and
measuring both the time of pressure out-
put and the discharge current waveform,
With a charge voliage of 40 kV and a
test setup similar to Figure 1 using
suntanned explosive, a delay period of
20 s was measured between arc formation
and explosive prussure output. Agree-
ment between calculated and measured
values was obtained when an inert thick-
ness of 0,0095 mm was assumed in the
calculation. Thus the theory was
normalized to agree with experimental
values by selecting a specific value
for the unknown inert layer thickness,

Forcing agreement of the calcula-
tion and the experiment by selecting a
value ot one parameter may mask the
possibility that values for otner
important parameters are not accurately
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a function of initial voltage

known, In order for the theory to be
useful, though only approximately
correct, agreement must be demonstrated
between calculated and experimental
values for other conditions. The next
section illustrates the adequacy of
this agreement.

COMPARISON TO EXPERIMENT

The ability of the theory to
predict the current waveform is illus-
trated in Figure 7. The current was
measured by integirating the signal from
a Rigowsky coil placed on the current
return path common tov all five wires.
Measured values of RB' L, and C were

used in the calculation and the value

of action representing arc formation was
adjusted to force agreement between
observed and computed delay time before
arc formation. 'This relatively good
agreement between computed and observed
waveshapes was repeated for similar
comparisons as the initial bank voltage
was varied between 14 kV and 45 kV.

A comparison between measured and
computed optical irradience time
histories both normalized to a peak
value of 1 is shown in Figure 8, Again
the relatively good agreement in wave-
shape is encouraging. The optical
instrument, a bhangmeter of a type
specianlized for nuclear effects testing,
was located 30 meters from the source.
Alwost an order of magnitude lower peak
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Fig. 7 - Comparison between measured and computed
total current waveforms
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Fig. 8 - Comparison of computed and measured normalized light
flux waveforms
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Table 1

Measured and Computed Arc Delay Time

Delay Time (us)
Charge Voltage (kv ‘Measured Computed Ratio
45 5.4 6.2 0.96
40 6.6 6.6 1.00
28 12.4 13.8 1.12
20 23.9 27.8 1.16
14 50.6 80.5 1.20

power was indicated by this instrument
than the computed value. Unfortunately,
the bhangmeter wns available only for a
single day, hence, resolution of this
important difficulty must await future
testing. With this uncertainty and the
observation that use of quartz rather
than Pyrex has little effect upon the
observed initiation density, a 100%
efficlency was assumed for the trans-
formations between electrical energy and
radiated energy.

The computed delay time for arc
formation is compared to the measured
time for 0,076 mm diameter wires
609.7 mm long in Table I for a range of
initial capacitor voltages. Clearly a
time dependent phenomenom which is not
‘ncluded in this theory favors shorter
arc delays in those cases where the
wire heating is relatively slow.

The most important comparison
between computed and measured values is
given in Table 11 where vamlues for the

Table II

Comparison of Computed and Measured Firing Delays

Computed Measured
E0 Firin Firin

vflatnakge W % Delay (EZ) Delay (g)
(k) (x3/m?) (°C/us) (us) (us)
45 85.0 28 18.5 16.0
40 67.1 26 19.8 20.0
28 2.9 15 25.8 24.4

20 16.8 4 41.8 No-Fire

18.2 13.9 0 No-Fire

(1) A is the mid plane area of the light source.

(2) The firing delay time is measured from the instant of
arc formation until the instant of explosive initiation,

(3) Same as 2 above except that explosive initiation corresponds
to measured pressure output from a quartz gage covered by

explosive,
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Table III

'Observed Detonation Pattern Spot Densities -

Computed (1) :

b Charge Temperature Detonation E
: Voltage Rise Rate Spot Density .
' (kV) (°C/us) (Points/cn?) -4

45 28 336 ]

40 26 136

28 15 54

(1) Approximate value

time delay from arc formation to
explosive output are given as a function
of voltage. Also, values for the rate
of temperature rise, and stored
electrical energy per unit of light
source area computed at the light source
mid plane have been included. The
reasonably good comparison between
cbserved and computed firing delay is
justification for further use of this
model, The observation of a no-fire
point measured at 20 kV with no
reflector was repeated with a reflector
and again a no-fire situation was
observed. It is estimated that for
these experimental conditions & no-fire
threshold would be expected at about

25 kJ/m? initial stored energy. The
theory predicts a value of 13.9 kJ/m?.
No further adjustment of assumed
explosive properties, i.e,, the
diffusivity, was attempted in order to
improve agreement,

A further experimental observation
is that a pattern of markings is left
on the structural surface after
explosive firing. These markings result

a somewhat subjective exercise; however,
representative data using the setup of
Figure 1 is given above in Table III.

The spot pattern is indicative of
surface firing simultaneity, For
ingtance, consider a spot pattern where
spots are located uniformly about
2.4 mm apart or at 17 points/cm®. Then,
with the known detonation velocity of
1.2 mm/us [1], initiation simultaneity
cannot be better than 1 ua on the
surface., Simultaneity is probably less
due to lower detonation vates associated
with transition from thermal initiation
to full detonation. A specification for
acceptable initiation can be derived
from these observations. We adopt the
results from the 40 kV observations of
Table II and Table III as the desired
initiation condition where a computed
temperature rise rate of 25,9°C/us at an
initiation temperature of 200°C produces
a spot density of 136 per cm® and the
similar values obtained at 28 kY are
adopted as minimum which must be main-
tained in order to avoid any possibility
of inttiation failure,

1
i from discrete points of initiation
by occurring at the interface between
i active and inert suntanned explosive.
. Hence, when the most favorably situated
Do explosive points are heated to firing
conditions, an explosive reaction is
o started which detonates adjacent
: explosive by shock wave excitation
i before a thermally induced reaction
A takes place. Interaction between
| detonations radiating from one initia-
i tion point with those radiating from an
adjacent initiation point cause a
i pattern of uneven pressure on the target
surface which leaves a "detonation spot
pattern.,” Counting this spot pattern is

PARAMETER STUDIES

Parametric studies were conducted
in order to identify those design
variables which might be altered in
order to increase the area which could
be fired without increasing the
capacitor bank size. In all cases the
experimental arrangement described in
Figure 1 was used as the nominal value

o memEmTI
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Table IV

Variation of Lamp Diameter

Lamp Firing 47 i i EAQ
Diameter Ar;‘ Delay Li nax min 2

(mm) (n®) (us) (°C/us) (k amp) (k amp) (kJ/m®)
15.90 0.239 19.8 25.9 98.2 52.0 77.0
12.70¢Y) 0,274 20.5 25.9 08.1 43.4 67.2
9.52 0,366 21,1 25.9 85.7 37.0 50.3
6,35 0.527 21.5 25.9 86,0 10.3 34.8
(1) Nominal circuit

Table V
Variation of Wire Number
a Eo
Area ﬁ;;?ng at Lnax Ly
2 ay o 2

Number (m®) (us) °c/us) (k amp) (k amp) (KJ/m*)

8 0,222 18.9 25.8 104.9 58.1 82.8

7 0.247 20.4 25.9 102.0 58.1 74.5

5(1) 0.274  20.5 25,9 98.1 43.4 67.2

3 0,300 20.5 26,0 90.8 29.4 61.3

(1) Nominal circuit

over which improvements are !Iought.:t
Usually several iterations were reguired
in order to select the appropriate area
which would just reproduce the nominal
value of temperature rise rate at the
instant of explosive initiation,

Reaults of these iterations are
summarized in Tables IV through X,

Reducing the lamp diameter reduces
the lamp's characteristic relaxation
time vemulting in an increased area.
Numerical verification is given in
Table IV. This improvement is limited
by the ability of the tube to withstand
arc pressure, a parameter which was not
investigated, Heavy wall Pyrex tubes

12,7 mm in diameter will sometimes burst

at maximum currents above 30 k amps, A

*Nominal values are; Capacitor bank:
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R = 0.076 ohms, L = 1,59 uH, C
v 40 kV; Wire: D -~ 609.6 mm,

V]
diameter = 0,076 mm, Number 5, Arc

2
action g = 42300 MR8

nm
0.274 m?, Efficiency 0.40, Explosive

23.yF,

Source: Area

diffusivity = 168 mm2/S, Conductivity =
0.02 J/(8 °C m), Inert layer h =
0.0085 mm.
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Table VI

Variation of Wire Length

second important result is that the
negative current, which occurs after
explosive initiation, is reduced by
smaller tube diameters. Reducing this
current amplitude will exhibit the
added advahtage of reducing instrumen-
tation noise [14] since any curreat
flowing after explosive initiation is
likely to cause noise.

Changing the number of wires
produced the results of Table V. Only a
limited gain is possible since peak
currents above 30 k amp/Tube exist when
3 wires are used, Changing the wire
length (Table VI) changed the arc delay
time but had a small effect upon the
firing delay. Increasing the tube
length allowed a modest increase in the
area. Similarly, variation in the bank
resistance, RB (Table VII) had 1ittle
effect.
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Increasing the speed of the dis-
charge by reducing the inductance
(Table VIII) had a significant influence
upon the maximum area. This is an
important finding of the study because
major inductance reduction is possible
through carefully executed modifications
to the light fixture.

The illuminated area increased with
higher charge voltage (Table IX) while
the energy per unit area remained
relatively constant, The area increase
is therefore a result of increased
stored energy.

The results shown in Table X
indicate the changes in firing time and
temperature rise rate which would result
from decreasing the spacing of the tubes
and thereby decreasing the illuminated
ares with no other changes in the
nominal setup. As the srea is reduced,

E =
Illuminated dar -+ i
Area A dt i
2 rcholly Firing Delay . Py i
Length (m™) {us) (us) (°C/us) (xJ/m“) !
457.2 0.239 3.8 19.2 25,9 77.0
609.7¢V 0.274 6.6 20.5 25.9 67.2
] 812.8 0.290 12.5 20.4 25.8 63.4 )
i (1) Nominal circuit ’
5 _
Table VII
variation of Bank Resistance
Illuminated dT
R Ar;' Firing Dolay at
(ohms) (m™) (us) (°C/us)
0 274 19.5 25.8
.o176¢1) 274 20,5 25.9
.0352 .261 19.7 25.9
(1) Nominal circuit
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Table VIII

Variation of Inductance

"

i
1}

i

BT O P WWMM sl sl

E0
Illuminated x
Argn Firing Delay 2
(i) @) (us) (°C/us) (kdJ/m <)
.40 0,432 17.1 25.9 42.6 ;
.80 0.360 18.3 25.8 51.1
1,590 0.274 20.5 25.9 67.2 E|
4.00 0,147 21.6 25.9 125.2
8,00 0.080 22.9 26.0 1230.0
(1) Nominal circuit
Table IX
Varistion of Charge Voltage
Eo
I11lumina ted x
Area Firi
2 ring Delay . 2
Yo (m®) (us) (°c/us) (kJ/m“)
50 . 400 20.2 25.8 71,9
45 .336 20,1 25.8 69.3
40V .274 20.4 25.9 67.2
35 212 19.4 25.9 66.5
(1) Nominal circuit

significant improvements in temperature
rise rate and reduced firing delays are
realized. The effect on the stored
energy requiroment is dramatic and
leads to excessively large capacitor
banks. An indication of the iuportance
of light intensity variations can also
be derjived from this table. Thus, if
the light intensity were half the nomi-
nal value, firing would be delayed

6.6 us and if light intensity were
twice the nominal value firing would be
premature by 5.1 us,.
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An investigation into an optimized
light source is given in Table XI.
Here the length to width ratio was held E
at 1.33, the 9.4 mm tube diameter was’ E
selected, the source efficlency was
improved to 0.6 by a reflector, and an
inductance value of 0.4 yH was used.
This type of improvement with a 45 xv
initial voltage could potentially
increase the illuminated area by a
factor of 3.5 while preserving the
firing simultaneity typical of existing
test experience. These improvements
could alsoc be employed to incremse the




Tahle X

variation of Firing Time and Temperature Rise Rate with Area

Eo

Ar;n ;:‘;:;" %% x . ;
(™) (us) (°C/us) (kd/m*) ]
.0635 12.1 57.47 279.8 .

.1370 15.3 37.48 134.3
: 27401 20,4 25.88 87.2 :
3 . 5480 27.0 13.65 33.6 F
(1) Nominal circuit ]

Table XI

Performance of Optimized Light Source

E
: 0
= Voltage dT i
Vo Area Dela dat x max
2 b4 0 2
(kv) (n“) (us) (°c/us) (kJ/m“) (k amp)
40V 2740 20,4 25.88 67.2 08.1
40?® 7300 19.0 26.18 25.2 94,8
E 402 .2740  12.2 52.89 67.2 94.8
: 452 .9640  19.3 25.33 24.2 107.0 ;
1 452 2740 11,6 59.56 85.0 107.0
(1) Nominal circuit
(2) The following changes were made from the nominal 3
7 circudt == L = 0,4 uH, N = 0.8, d = 9,52 mm
l ___

temperature rise rate by a factor of 2.0 through an arc light source. This model
and thereby reduce the firing delay. is shown to agree reasonably with

Note that these improvements yield experiments over a limited range of
maximum currents in each of five lamps important variables. When this model is
or only 21 k amps. used to study improvements which could

be made to the light source, significant
improvements to the firing process arve

CONCLUS ION predicted. It is concluded that the
most significant variables are the
An analytical model has been circuit inductance and the tube diameter.

formulated of the processes occurring d
during the firing of SASN explosive by
the discharge of a capacitor bank

g e
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TERMINAL VELOCITY AND ROTATION RATE OF A FLYER PLATE PROPELLED
BY A TUBE-QOONFINED EXPLOSIVE CHARGE®

R. A. Benham
Sanxiia lLaboratories
Albawquerque, New Maxico 87185

) A method for predicting the terminal velocity and rotation rate of a flyer
plate propelled by an open-erdied, tube-contained explosive charge has been
developed, A procedure for calculating the fraction of the explosive that
is effective in accelerating the plate leads to a very simple set of
equations for predicting the performance of the explosive system, Calcu-
lations using this are compared with results from numerous experie
ments. Measured values of flyer velocity are predicted within +58% and

L rotation rates with +10%.

T

P TGO T

INTRODUCTION

Experiments amploying open-ended, tuhe-
confined explosive charges to propel intact
flyer plates to high terminal velocity are
currently being employed to study weapon
fuzing under conditions simulating high
velocity impact into haxd earth targets. The
moving plates are used to impact stationary
ballistic missile warhead fuzes at impact
velocities of up to 3650 nys, This turnaround
mathod produces repregentative impact stresses
while avoiding the high coat of flight test.
Previous papers [ 1,2,3] have described the
basic experimental concepts and have devel-
oped an analytical approach useful in pre-
dicting the behavior of explosively acceler-
ated flyer plates, The approach in these
papers relies on the espirical development of
an explodive mags "discount factoxr"** which is
then used to analytically predict the behavior
of similar systems, Recently, a sinple
analytical model of the explosive process was
developed by modifying one initial basic
aggunption of the previous work., This achieve-
ment is significant in that it eliminates the
need for new empirical data in the design of
different open-ended, tube confined explosive
systems, The new model cames from a concept
developed by Baum (4] and reiterated by
Kennedy [ 5] of estimating the mass of explo-
give that is useful in accelerating a plate

*his work was supported by the U.S,
Energy and Research Development Administration.
**The explogive mass "discount factor"
represents the fraction of the explosive that
is effective in accelerating a plate for a

particular explosive system.
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for an unconfined explosive charge. This
paper extends the concept to allow estimating
the flyer plate terminal velocity for tube~
oconfined explosive systems, The model allows
prediction of flyer plate terminal velocity
and rotation rate within a few percent. The
systen performance is calculated using only
the explosive, the tube and the flyer masses,
the explosive diamster and length, along with
explosive properties cf detonation velocity
and Gurney [ 6] constant.t

This paper presents the theory used in
the development of the model of the open-ended,
tube=confined exploaively propelled flyer
plate., The theory has been applied to 25
tests conducted during the previous development
work (1,2,3 ], The theoretical-experimental
correlation which indicates excellent agreement
between theory and measured results is
included,

DEVELOPMENT OF THE THBEORY

Figure 1 shows the configuration of the
explosive system, The explosive is housed in
a cylindrical tube container and is detonated
at a single point at the open end. The tube
provides lateral confinement to the exploaive
expansion process, thus containing the
explosive gas pressure behind the flyer for
long enough to accelerate the plate to a high

+The Gurney constant, or velocity, relates
the quantity of chemical energy (E) of an
explosive that is converted to kinetic energy
\%'_Sme detonation process and is denoted as




|
r

terminal velocity, The cushion attenuates the
shock pressure into the flyer plate, therefore
decreasing the probability of its breakup due
to spallation. The flyer plata consists of an
impact plate and a guard ring. The pressure
aexerted across the back face of the flyer plate
is not exactly uniform; i.e., it is lower at
the edges because of lateral rarefaction
waves, The guaxd ring is includaed to isolate
the impact plate from the edge pressure
gradient, as well as to separate the plate
fram any interactions that might ocour between
the guard ring and the tube walls, The inter-
face betwean the quard ring and the impact
plata is spherical which prevents angular
monments, as well as shear stresses, from
affecting the impact plate motion. The flyer
plate may be tapered across a diamater to
cause plate rotation which allows inpact with
the test item at a predeteymined angular
orientation., The explosive mass (C), flyer
mass (M) and effective tube—confinement

masa (N) will be used in the theory later in
this report.

FLYER PLATE [ MASSM1
MAY BE TAPERED TO CAUSE
CU/SHION PLATE ROTATION,

MR
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T
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e} IMPACT

/. . PLATE
berowatGe | L ' ' VR GUARD
; / LR é--——"'" ] oring
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SOLID SECONDARY EXPLOSIVE TUBE CONFINMENT
(MALS + C) CEFFECTIVE MASS « N}

Z

Fig. 1 = Experimental Configuration

The new theory extends a Gumey
of discounting explosive mass [ 6] , which
has been used extensively to predict the
velocity of fragments in the design of explo~
sive systems such as bombg, shells, and
grenades. The Gurney model has been reviewed
by J. E. Kennedy [ 5] who presented applica-
tions that illustrated its range of appli-
cability. Kennedy concurs with Baum (4] that
for explosive systeme with significant losses
due to lateral rarefaction waves, i.e,, no
tube confinement, *"that the explosive material
within 300 of the normal at an edge of the
charge cannot contribute to metal accelera-
tion," Baum [4] determined the magnitude of
the discount angle by assuming that the
explogive that had experienced an "average
or characteristic rarefaction wave" by the
time the explosive had just campletely
detonated, oould not contribute to driving
the flyer plate mass, He estimated that the
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magnitude of the “averaqe rarefaction wave”
velocity, radially imward (for explosives
with y = 3}, is approximately one<half of
the detonation velocity (D), which leads to
the calculation of a discount angle of

© (0 = tan D/(2:D))., Figqure 2 shows how the
discount angle process works for a lossy
system (no lateral confinement).,

If the explosive length (1) is less than
the charge diameter divided by the tangent of
the discount angle, then the explosive in the
volume of a truncated cone of half angle 30°
and height (t) is the effective mass used for
driving the flyer plate.

¢
EXPLOSIVE MASS « €

EXPLOSIVE MASS 10
BE DISCOUNTED * ¢,

/ ‘\x/ ‘

~ ’ |

OISCOUN] / A
anoie L — 0% ' \ !
Y N
1 EFFECTIVE EXPLOSIVE
MASS + C-Cy +

FLYER PLATE MASS + M

Fig, 2 - Mass Discount Method for Lossy
Configurations

The explosive mass disocounting method can
now be extended to systems that are laterally
confined by a cylindrical tube since it is
established that an unconfined explosive charge
requires a 30° disoount angle for use in |
predicting the flyer terminal velocity. The
discount angle for a tube-confined system is
assumadl to be dependent upon the velocity of
the characteristic rarefaction waves moving
laterally inward toward the system axis. The
velocity of the characteristic rarefaction
wave is controlled by the escape velocity of
the detonation products from the lateral
suwrface of the explosive. The maximum escape
velocity is equal to the terminal radial
velocity of the confining tube wall., The
tube terminal velocity can be calculated using
the Gurney [ 5] relation shown in Fquation 1,
This equation predicts the terminal radial
velocity of a long cylindrical tube packed
with explosive. The effect of the gas losses
at the end of the tube is not addressed by
Equation 1. Since the flyer plate is generally
far away from the open end of the tube, then
the effect of the gas losses out the end of the
tube upon the radial terminal velocity near the
flyer is not critically important,

sl e 1
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V'l‘ = tube terminal radial velocity
\}ZE = Gutney veLocii;y of the explosive

N/C = ratio of the tube mass that is
contact with the explosive® to
oxplogive nass per unit length
of tube

For sinplicity, the discount angle for
the tube-confined systom is assuwed to be
linear** in the tube terminal radial velocity
between the limits of ¢ (discount angle) =
0° for a very thick confining wall
(N = » in Equation 1, Vp = 0) and ¢ = 30° for
an unconfined explosive (N = 0 in Equation 1,
Vp = 242E). This linear relation is shown
in Equation 2 relating discount angle to tube
terminal velocity.

0 = 3%V (2)

Vi is the maximum velocity of the con-
finement wall (for a very thin wall)

Voo =232 (3)

and is found by putting H = 0 in Bjuation 1, as
seen above, Putting Equations 1 and 3 into
Equation 2 gives the formula for the tube-
confined discount angle, @

0 = 307 &5V @)

Figure 3 shows the process of the lateral
confining tube expangion where Vp is the
flyer plate texminal velocity, In the figure
the detonation wave front has just reached
the back of the flyer plate.

*Only that portion of the tube which is in
radial contact with the explosive is used in
calculating N, The portion of tube that houses
the flyer plate and that acts as a barrel is
not used in calculating the effective tube
mass (N).

**The linear assumption does fit experi-
mental data as seen in a later section.

EXPANDED
TUBE Q
CONFINER
CR-rT—— Ty
v : d vt/
v “J' | L9 | ’[
\ \
\ [} '—-c—VT
J
Fig. 73 - Discount angle for the Tube-Confined
Explosive Charge

The discount angle of Equation 4 defining
a truncated or full cone, can be used to deter—
mine the effective mass (Ceps) of explosive
for driving the flyer plate, The effective
explosive mass is assumad to act in a one-
dimensional manner and, therefore, can be
used directly in the one~dimensional gas
dynamics solution for the motion of & plate
with detonation loading [ 7 ], Byuation 5 is
the relation for the final average velocity of
the plate using the ane-dimensional gas
dynanics solution with the explosive mass C
replaced by the effective explosive mass Cefge

8 Z-1
2cC
= eff
z -(“*27—»4“) )
D = Detonation velocity

M = Mass of the flyer plate

Ceff = Effective explosive mass

I,nKemedyspaper[S]thegasdynmlc
solution (y = 3) was compared to the
golution with very good yesults, 'me author
chose vy = 3 for the explosives used in the
experimental series (Comp. C-4, PBX=9404) based
on Kenhedy's work and upon calculated aver.
values of vy fram the JWL BEquation of State 8]
(see Appendix).

one limit that cames from the discount
angle concept is that if the length of the
explosive charge is greater than a critical
length ¢t (the radius dxvided by the tangent
of the discount angle), then the effective
explosive mass is that of a cone with the base
equal to the charge radius and length equal
2.
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No additional velocity is achieved by adding
axplosive beyond this length t,

Equations 4 and 5 can be used to predict
the average valocity (V) of a flyer plate
from an oxplosive asserfbly like that in Fig. 1.
The values for N (mass of the effective tube
oonfinement) and C (total mass of the explosive)
are uwed to calculate @ (By, 4). The values
of explosive diameter axi length are used with
0 to calculate the effective mass of the

explosive (C ,.). The explosive detonation
velocity (D) and flyer mass (M) are used with
Cags and y to calculate the flyer terminal

ve

ity waing By, 5.

In sane cases, it is desired to cause the
flyer plate to rotats slowly so that oblique
impacts with targets may be obtained., The
flyer plate thickness is varied linearly
across a diameter and since, for a oonstant
thickness of explosive, the local flyer plate
velocity i3 inversely proportiochal to plate
thickness, then a velocity gradient is develop-
ed acrogs the tapered plata. A method of
designing a flyer plate taper has been derived
using the effoctive exploasive mass (C . ) from
the results of Equation 4, Uhe veloct
gradient across tha plate can be detexmined
from the desired plate rotation rate. ‘The
absolute velocities at the edges of the plate
can be calculated by adding the welccity at
the center of the plate to the velocity
dif farential between the center anxl edge of
the plate., Bguation 5 is uged to determine the
local mass of the flyer plate that will give
the desired velocity at that location, The
thickness of the flyer can then be determined
by knowing the mass density of the flyer
material. In the reverse manner, if the
flyer plate taper is known, then the expected
rotation rate for a given explosive system can
be calculatexl,

The radial width of the guard rinc is
chosen to be equal to the explosive length
(2) times the tangent of the discount angle,
It is expected that the main pressure gradient
acrogs the back of the plate occurs in this
outer annular region,

A computer program has been written
which incorporates the concepta of this method
and allows calculation of terminal velocities
and rotation rates for a tube-confined
explosive system.

THEORETICAL~EXPERIMENTAL OORRELATION

Data from experimental work of Mathews and
Duggin {1,2,3,9] were available to tha author
and were used for canparison to this theory,
The experiments cansisted of detonating
explosivz systenms similar to the cne shown in
Fig. 1 and measuring tha flyer plate velocity
and rotagot:izate. A flash X-ray system J:s
used to multiple shadowgraphs of
flyer plate at known times after the
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explogive initiation, Compensation for the
affects of air drag on the plate and parallax
assoclated with the X-ray system was made
[1,2,3], The results of the experiments were
taken directly fram Mathews' and Duggin's data

‘with no additional adjustments heing made,

‘Table I shows the results of 16 non-
rotating tests with the tube confinement mass/
expleaive mags ratio (N/C) varying fram 0,06
to 4,4 and with the explosive mags/flyer mass
ratio (CM) ranging from 2,99 to 20.14. The
values of calculatad final velocity (using the
method of this report) were within 458 of the
measured velocity,

Even for charges of length greater than
the charge radius/tangent of the discount
angle the agreement is excellent (in these
cases the apex of the cone of the discount
wolume is within the explosive)., Possible
errors in experimental technique are of the
same magnitude as the theoretical-experimental
variance observed from the data.

Table 1I shows results on rotating systens.
The agreement between the measured ard
calculated rotation rate magnitude is good,
Experiments are currently being designed to
further investigate the rotation process which
will hopefully give even better agreament
between the theory and experiment.

The theory was checked against three
experiments using an explosive made up of two
explosives: PRX=9404 and Canposition C-4 at
a ratio of 812, The explosive volume was
adjustad analytically to an equivalent volume
of PBX-9404 explosive by rcplacing the
Camposition C-4 volume by an energy equivalent
wolume of PEX=9404. The energy aquivalency
was based an the Gurney velocity of the explo-
give ag shown in Equation 6.

Sz (C~4)

Volume,ey_gg04)™ VOLume (4 (6)

ﬁ*ﬁm - 9404)

All three tests were designed for flyer rota-
tion, The repults are shown in Table III. The
agreerent in velocity is excellent and the
agreament in rotation rate is acceptable. In
every case, the meagured value of rotation
vate is less than the calculated values.

SUMMARY AND CONCLUSION

A theory for predicting the velocity amd
rotation rate of a tube-confined explosively
driven flyer plate has been developed. A
gcheme for the mass of the explo-
sive that is effective in drivina the plate
by discounting a cquantity of explogsive based
on the amount of lateral tamping present has
been devised. The technigue icts terminal
velocity of a tube-oonfined flyer plate to

|
|
|




within +5¢ and rotation rates that arve about Yy At any expansion V can be determined

108 highar than measured. Experirentation is using Equation A~3 leading to a plot of

continuing to further investigate the rotation y va Vv,
process, The theory has also been used to
. predict, with equally good results, the v/
performaiice of tube-confinal systems with Y= F('a'\?) (A=3)
multiple explosives.
Figure A=1 shows the plots of vy va vV for
} APPENDIX the e;q:losiv:agumitim c-4 and maxag«u:.L
The aver ue of vy over a given expansion
i Determination of y for the explosive used hdetenh?;dfmﬂ;dataufqulevv-v

in the tube-confined, flyer-plate system is plots by uaing the averaging Equation A-4

inportant since the final plate velocity (Vy) *

is nearly linearly dopendent on its value.

(see Elquation h"l) » v

L, 3%t )2 ; /; yav
V. =D B TN N (A=1) Average = v (A~-4)
F Z - 1/4
Y =1 1+ Ieff +1 dv
" 1

where
The results show that the average vy for
D = Detonation velocity of the explosive Compoeition C~4 for V = 2,36 (90% of final
L velocity) is 2,94 and for V = 3,15 (958 of
[ final velocity) is 2,91, For PEX=9404, the

Coge = Effective explosive mass average vy for V = 2,36 i 2,96 and for
V = 3,15 is 3.12. These values justify the
M = Flyer plate nass use of y = 3 far the prvcess inwolved in

the barrel-tawped explosive system for
propelling flyer plates to high velocities,
Through calculationg performed by Baum
[ 4] and Gurney [ 6] it has been found that for

this system 90% of the final flyer-plate velo~ EXPANSION REGION

city is attained after the explosive has ar OF INTEREST
expanded to 2.36 tines its initial volume
(95¢ at 3.15 times the initial volume). These 3L /3<_.
values of percent of final flyer welocity va -
expansiocn ratio are not affected by the v
¢ quantity of lateral tamping because of the 2
: nature of the explosive mass disccunt process, r
. TAVE=2,940RV =2.%
E The average value of y for use in 1F YAVE = 2.9 FORV = 3.15
3 BEquation A=l is determined by using the JWL
equation-of-state for various explosive N |
: product gases, 1 2 3
' (a) COMPOSITIONC - 4
' P w4 e RV . ¢ (r=2) Ve VOV-
where v o
: 4 F EXPANSION REGION
i P = Pressure OF INTEREST
. 3 A
V = Instantaneous volume ¥
V, = Initial volume 2
5 YAVE~ 2,96 ORV = 2,36
V = VA, = Specific volure 1 YAVE=3.120RV = 3.15
A'B'C'RI'RZ = Empirically determined/ 5 ‘5
conptantst? {b) PBX - 9404 vegl !
0

Fig. A-1 - YVSV PLOT FOR EXPLOSIVES OF INTEREST
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A STABILITY THEOREM FOR A DYNAMICALLY LOADED
LINEAR VISCOELASTIC STRUCTURE

D. W. Nicholson
Naval Surface Weapons Center

Wwhite Oak,

Silver Spring, Maryland

20910

The response of a linear viscoelastic structure to a

For the finite 2lement
eguation of dynamic equilibrium a representation of the
solution is derived using the exponential matrix function,
and this representation permits appliecation of the highly

dynamic load 1s considered.

efficient method of Gaussian guadrature.

Positive

definiteness and other properties of the system mass,
damping and stiffness matrices are shown to entlal
satisfaction of an inequality ensuring a physical and a

numerical type of stability.

INTRODUCTION

We consider a damped linear system
under dynamic loading. Positive
definiteness of the system matrices is
shown to ensure satisfaction of a
condition both for physical and
numerical stability. B general
solution is obtained using the matrix
exponential function, and computation
can be performed using the efficient
method of Gaussian quadrature. Our
results appear to be new.

Of course, stabllity of linear
viscoelastic and other time invariant
linear systems has been extensively
studied before. Primarily, physical
stability was investigated and an
approach (Lyapunov's first method) was
followed which obviated the need for
establishing a certain mathematical
fact (namely, that the norm of the
transition matrix not exceed unity).
However, because certain additional
physical and numerical stability
results are thereby obtained, this
fact is worth demonstrating. Here,
apparently for the first time, the
demonstration is given, and several
consequences are described.

RESPONSE OF DAMPED LINEAR SYSTEMS
1, General Porm of the Solution
In finite element analysis and

elsewhere, the dynamic response of a
linear viscoelastic structure may be
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represented as the linear system [1]

M + DX + Kx = £(t) (1)

where M, D and K are, respectively,

the mass, damping and stiffness
matrices, x is the displacement vector
and £ is the force vector. the
matrices are n by n and real, constant,
Hermitian and positive definite (RCHPD),
the vectors are real and n by 1, and
the superposed dot denotes differ-
entiation with respect to time t, The
vector f({t) is considered known as a
function of time. For wave propagation
analyses, the mass matrix is diagonal

[2).

We introduce the matrix
exponential function defined for the
nonsingular matrix (Xt) by the power
series (3]

) (Xt)j/j! .
j=0

Exp (Xt) = (2)

This function is completely analogous
to the scalar exponential function,
and in particular we will need the
useful properties

Exp (Xt) Exp(-Xt)

n
~

(3a)

n

Exp (Xt,) Exp(th) Exp(x(tl + tz))

(3b)




¢ Expxe) =

X Exp(Xt) = Exp(Xt}X (3a)

d
t
1

5[ Exp(Xt)dt = (Exp(xt)-I) X,  (3d)

Fquation (1) may be rewritten as
Ay + Bg = h(t) (4a)

wne e
r |
D 1K

]
R T
l—K 10

{ £(t) }
: .

Using Ejuation (3c), Equation (4a) is
readily shown equivalent to

=10
3
o
i

h(t)

Exp(-A"1Bt)fe Exp(a~lpt)q = A h(ey.

After elementary integration and the
application of Equation (3c), we have

k<

q = Exp(—A'lBt)./. Exp(A_an) A"lh(n)dn
° {4b)
s
. -1, .. -1
-j Exp (-A~tB0)a"Yg (r)dr {4e)
[=]
where

glt) = {ff(t;n) }.

The foregoing integral represen-
tation of the solution suggests a
power ful method of integration, namely
Gaussian quadrature, as discussed below.

2. Application of Gaussian Quadrature

The numerical integration can be
facilitated by exploiting the useful
properties of the exponential matrix
function, particularly Equation (3b).
bivide the interval of integration into
N subintervals of length At. The

Gaussian quadrature points in the ith
such interval are designated Tl(i),
Tz(i),..., "k . But for equal
intervals At, these points have the
relation

(1) . (1) -
Ty Ty + (i-1) At (5)

where i = 1 corresponds to the interval

0 ¢ 1 < At. The interval for the ith
interval ie now evaluated as [4]

iat
EXp(-A_lBT)A~lq(T)dT

(i-1) At (6)

HI>

N

t & -
3. Exp[-A
i=1

Now Equation (3b) together with
Equation (5) implies a kind cof
recursion relation:

if
3, @) o pxpaalag, (4
j J
then
Jj(i) = Exp(aA‘laAc)Jj(i'l’
_ - (1)
= Exp (-A lgae)d laj .
Equation (6) is conveniently rewritten
as
1At
-1 -1
Exp(-A "BT)A “ql1)drt
(1=1) At
k ;
(i-1) (i)
= %E Exp(-A'IBAt)E: J. A-;q(T )
§=1 J J

S0 the application of the Gaussian
gquadrature methed, which itself is most
efficient, is facilitated by the
recursive relations derived from the
properties of the matrix exponential
function.

We will subsequently prove a
strong stability theorem for the present
numerical method which will be then
seen to offer strong attractions
compared to the more common methods,
including mode superposition and direct
numerical integration. These latter
two metnods are sometimes inconvenient
or uns{ ble [5]. But one very serious
disadvantage of the present method is
the fact that the exponential matrix
function can be fully populated even
when M, D and K are sparse and banded,
so that storage limitations may be
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bothersome., We hope to determine in
future work how this difficulty can he
obviated.

STABILITY CONDITIONS

In this section we derive an
inaqualicy ensuring both a physical and
a numerical type of stability. 1In the
subsequent section we prove that the
inequality is satisfied by the damped
%i?ear aystem represented by Equation

l}.

1, Physical Stability
For impulse loading expressed by
£(t) = fo §(t)
where fo is a constant vector and 6(t)
is the Dirac function, the solution

expressed by Equation (4b) becomes [6]

£
q = Exp (-A"tBt)a~? 5=

The present system will be called
physically stable if its response to an
impulse loading is nonincreasing in

time. Let |.| denote some vector norm
and let ||.|] denote some consistent

matrix norm [7): i.e., for a vector y
and a matrix Y,

eyl < TIYll Tyl

Physical stability obtains if for some
such norms

£
|ql/|A'1§59—f <1
It is sufficient if

|| Exp(-A"Bt) || < 1 )

fer all t > O. Hereafter the system of

interes: will be called physically
stable if Ineq. (7) is satisfied.

To consider physical stability
further, consider the constant amplitude
oscillatory input

f = fo Exp({iwt) = f_ Exp(Tiwt).

(o]

(That £ Exp(iwt) = £, Exp (Iiwt) is

readily proved from Equation (2).) Now
referring back to Eguation (4b) we find
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o nxp(=A”]nr) [Uﬁp [IA“]H + imllt]-l]

-1

TN SRR T Sl by

ho

assumi nyg [A-ln + imI) is nonsingular,
which we will subsequently prove it to
be. Rewrliting gives

q - [Exp(ielt) =Exp(=a" Rty )

G e e AT L
Qo

Ry virtue of norm propuertics,

la] - {I|pr(im1t)l|+|lﬁxp(—A"lut)I|}
-|(A'ln + imI)”lh'lhol .
Rut
FExp (Iiat) 1] = |Exp(iwt)] = 1,

where in this instance the vertical
bars denote the magnitude. By the
physical stability condition, 1lneq. (7),
it follows that

1

lal/l2 " eeien "a™ | s 1.

Otherwise stated, the phvsical
stability condition implies a bound on
the response to a constant amplitude
oscillatory input. By using the
Fourier representation

fiey = ¥ £ Exp(in.t)
n=o

one may prove that the present condition
of physical stability leads to a

corresponding bound on the response for
a very general class cf input functions.

2. Numerical Stability

Computational error will arise in
the foregoing numerical approach from
several important sources, including
quadrature error and "propagated initial
error.” A computatiocnal method will be
called stable with respect to a given
source of ersor if this error increases
at most linearly with the number of time
steps over which computation is
performed, Of primary concern in this
regard is that error at one time step
might be amplified in subsequent stegs.
At first glance, such a difficulty would
be expected here because of the presence

of Exp(-A"lBt) in the integral of

RO




Eguation (4¢). In this section we
focus on the computation of

Bxp(sA"lsL).

Owing to property (3b), if t=mhAt
for sowe integer, then

1

Exp(-A‘lat) = Exp(-mA” "BAt)

[Fxp (-A~"tBat ™.

Suppose that computation of

Exp(-A"lb t) introduces a "gmall"
error B such that the actual computed
matrix C is given by

C = Exp(~A°IBAt) + B,

where [|B][/]]c]|] << 1. (Rapid

computation of Exp(—h'lBAt) is
discussed in the appendix.) Assume
that subsequent matrix operations
introduce no further error, and now at

the mth time step
m =1 m
c" = Exp(=A "BAt)
+ o Exp(-a~lzan)y™ tE....

th errvor Em ag E_ =

m
<™ - Exp(—A-lBAt)m, and for |[E]]
sufficiently small we obtain

Define the m

1

]

m-lE

E, = m [Exp(-A""BAt)] .

In terms of matrix norms,
<1 -
He 11 <m [ exp-a~tmae) | ™ Hle] |

Clearly, the present erroxr grows stakly,
i.e., at most linearly with m, if

||Exp(—A‘laAt)|I <1,

and by Equation (3b) this condition
holds if and only if

||Exp(-a"YBe) || < 1

for all t, But this last inequality
was previously given in Ineq. (7) as
the condition for physical stability.
Recapitulating, Ineq. (7) states a
condition for both a physical and a
nunerical type of stability.

In the subsequent sections we
prove thut Ineq. (7) holds under the
assumption that M, D and K are real,
constant, Hermitian and positive
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definite (RCHPD) .,
STARTLITY THEOREM

A sulitable matrix norm [7) can be
found such that Ineq. (7) ig satisfied
if and only if

o (Exp (-A"1BAL)) a1

where p denotes the spectral radius of

the matrix Exp(-A'IBAt). (For the
eigenvalues Ai(Exp(—A_lB t),
) ~1
p(Exp(-A "B t)) =

max | Xi(Exp(=A-lBAt))|.)
i

Now (8]

A, (Bxp (-A"1BAL)} = Exp (-1, (a"!B)at)

and upon writing Ai(A'lB) =a, + 8,
we have

nfﬂxp(-A'laAt)l

= max [IExp(—aiAt)Exp(=iBiAt)I]
i

= max | Exp(~uiAt)[
1

= Exp [-(min ai)At].
i .

So now proving stability reduces to

proving that min a, 20, that is, to
i

proving that the eigenvalues of a"lp

have only nonnegative real parts. 1In

this cvent A 'B is called a stable
matrix.

A matrix will be called strongly
stable if its eigenvalues have only
positive real parts, Our strategy in
proving that Ineq. (7) is satisfied in
the present system is to show that the
positive definiteness and other
properties of M, D and K entail that,

for every € > 0, A1 (B + eI) is similar
to a strongly stable matrix, and is
therefore itself strongly stable.

Jt is convenient to introduce an
intermediate notion, Specifically, a
matrix Y will be called pousitive real

[7] if and only if yTyy is a positive

L
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real number for every nonvanishing real

vector y. (Here yH is the Hermitian
transpose of y.) By a theorem
attributed to Wachspress [7], necessary
and sufficient conditions for Y to be

positive real ere thatY + YH be
positive definite,

For every real ¢ > o, B + €I is
positive real since
2(D + :I} ]
B+ el + (B + cI)H =
Le
is positive definite (block diagonal
with positive definite blocks), Now

the RCHPD matrix Al
a-l o av1/2 \=1/72

likewise RCHPD [7].
nonvanishing real vector y, y A
(B + eI)A” 172 can be written as

(Anl/zy)H(B + LI)(A-I/zy) and hence is
a positive real nunber since B + €I is

positive real. (That A"Y2 ig non-
vanishing follows from pogitive
-1/2

definiteness of A-l/z.)
(B + er)a~1/2

2el

can be written as

where A"}/ §
Further, for every
~-1/2

Hence A
is also positive real.

We now invoke a theorem attributed
to Lyapunov [7]. A matrix X is gtrongly
stable if and only if there exists a
positive definite, Hermitian matrix Y

such that XY + YXH is positive definite.
With the identification ¥ = I, it

follows that the positive real matrix

l 2(B + eI)A"l/2 is strongly stable.

But note that

1(B + el) =

A—l/2 -1l/2 =1/2 /2'

[A (B + eI)A ] al

So A"l (B + €I) is similar to a strongly
stable matrix and is therefore itself
strongly stable. For every € > o, its
eigenvalues have positive real parts.

Hence A"1B is a stable matrix, and the
satisfaction of the stability condition,
Ineq. (7), is proved for the system
represented by Equation (1).

CONCLUSICN

We have considered a damped linear
system with positive definite mass,
damping and stiffness matrices. A
solution permitting application of the
efficient method of Gaussian quadrature
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has been derlived using the matrix
exponantial function. A stability
condition has been derived ensuring
stable response to a broad class of
dynamic inputs, and also ensuring
numerical stability with respect to
propagated error., A theorem has been
proved showing that the stability
condition is satisfied under the
assumptions on the system matrices,
particularly positive definiteness.
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APPENDIX

Rapid Computation of Exp(-A_l

BAt) :

The exponential matrix function
satisfies the eguation [8]

-1
Exp (-A"1BAt) = lim [ - A B]
m-M!O

One may derive the approximation




(e

I

1

m
ixp(—h-l BAt)

m
Fd
+ fz(m)At3 + 0(nre’y.

A ropresentation accurate to order

0(At4) is obtalned by eliminating At2

and At3 in the system

-1 )
N TBHAt) 2
(1 - —m + fl(m)/‘\t

Exp (-A"1BAt)

]

+ fz(m)/\t2

-1 md-1
Exp(-A~TBAt) = (I - Am+BAt)

+ £ me)aed + £y me1) e

~1 m+2
lpat) = (1 - A_Bat)

Fxp (-A m+2

+OE (me2) AL + E, (me2)Aed

This leads to an expression of the form

laaey = otaeh

_ m=-1+1
Ejsqi(m)[x - ﬁiﬁﬂﬁ% g

“ M=1+1

Exp (A"

where ql(m)l' q2(m) and qa(m) are
readily derived.

Suppose nhow that m = Zk for a k
positive integer. Then computation of

a"leace,™
(1 - 2===) requires only fnm/&n2

matrix multiplications according to
the scheme

jl=1

Jp = m

k qd = 1,2 000000, k
jq+l = 2jq

- J ~1 jq2
_a~lpary’arl _ [(I1-A7TBAC) ]
m m :
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ANALOG DOUBLE INTEGRATION OF SHOCK PULSES
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Conventional monitoring and evaluation in shock testing 1s based mainly
- : on acceleration pulse recordings from a shock machine and a tested pro-
. duct., For product fragility boundary establishment, shock machine

: velocity change is efther computed from drop height, measured by an
optical velocity meter or single integration of the acceleration time
pulse.

An approach to acceleration transient analysis is described whereby a
real-time double integrator circuit provides analog readout of velocity
and displacement as well as acceleration. Absolute and relative velo-
city changes and displacements are obtained by means of consecutive
integration of signals from acceleration transducers,

; Although an analog double integration circuit is featured in this work,
the applications also apply to digital double integration.

e TR

INTRODUCTION

Since the advent of shock machines for
shock testing [1], monitoring and evaluation of
test results 1s based mainly on acceleration
pulse recordings of shock machine and tested
product. For product fragility boundary esta-
blishment [1,4], shock machine velocity change
{s either computed from drop height measured by
an optical velocity meter or single integration
of the acceleration pulse [2,3,4].

Real-time double integration can signifi-
cantly extend the capability of acceleration
transient analysis whereby absolute and rela-
tive velocity changes and displacements can be
measured by means of consecutive integration of
signals from acceleration transducers {(acceler-
ometers) [5].

In a recent study conducted by the authors
at MTS Systems Corporation, a practical single
and double integration electronic network was
developed utilizing a small analog/hybrid com=
puter. This prototype network wii. serve as a
basis for development of a commercial Analog
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Double Integrator (A.D.1,) for simultaneous
real-time recording of velocities and displace-
ments as well as the source acceleration sig-
nals,*

An A.D,1, in conjunction with the availa-
bility of extremely 1ight weight and high sen-
sitivity accelerometers provides the capability
of measuring relative displacements of very
delicate product component parts with good
accuracy.

In shock machine testing, absolute table
and product velocity changes and displacements
as well as velocities and displacements of the
product in relation to the table or product gom-
ponent parts in relation to the product itself
can be measured. Some additional practical
application possibilities are:

1. Hammer/Anvil configurations.

A. Measuring dynamic displacement of

*Readers Interested in details of the electronic
net:ork of A.D.I. are referred to the second
author.
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the grogrammers of a shock machine
0.4).

B. Velocity changes and recoil dis-
placements of inertia activation
mechanisms (automatic weapons,
canons, dies, etc.).

2. Packaging problems.

A. Measuring velocity changes and
dynamic displacements of cushioned
items and product component parts.

B. Measuring dynamic cushion deflec-
tion in shock machines, cushion
testers, nr free fall drop tests
of packaged products to detect
“bottoming" strains (maximal
cushion deflection).

C. Detecting critical dynamic deflec-
tions of containers or product
component parts. This is espec-
{ally fmportant in product fra-
gility testing whereby unacceptable
deformation (non-destructive
assessment) of components on the
verge of elasticity 1imits rather
than actual failure (destructive
assessment) serve as product fra-
gility criteria.

The A.D.1. also affords estimation of the
energy involved 1n shock by real-time plotting
of the acceleration signal versus the displace-
ment calculated by double integration. This
type of analysis creates a completely new dimen-
sion in shock analysis, since the area under the
acceleration (force) deformation curve repre-
sents the energy involved in the dynamic test.
Thus, it is possible to estimate energy absorp-
tion of cushioning materials, shock absorbers,
etc., or plot dynamic hysteresis curves of any
material subjected to transient loads.

Although an analog double integration cir-
cuit is featured in this work, the applications
apply to digital double integration as well.

PRINCIPLES OF OPERATION

There are two possibilities of A.D.I. app-
lication: "absolute" and “relative" mode. In
the Absolute Mode only one accalerometer is
used for determiration of absolute velocity
change AV and displacement aX, In the Relative
Mode two accelerometer signals are subtracted
from each other to obtain relative acceleration
GR, whereupon relative velocity change aVp and
relative displacement AXR are generated by
A.D.I.

Absolute Mode

Figure 1a is a schematic of the absolute
mode setup for shock machine testing.

The signal 61 from a probe accelerometer
attached to the place where displacament mea-
surement 1s desired, 1s fed into the A.D.I.
circuit through a suitable accelerometer condi-
tioner. This mode requires setting of initial
conditions for velocity Vo and displacement Xq
at the instant of collision. However, initial
conditions are not required for measuring total
velocity change 4V alone. Thus, by running a
preliminary test and single integrating the
acceleration signal,Vy can be computed by:

Yo TV, )

where C. is the coefficient of restitution of
the co]Tiding surfaces,

C is either known from physical tables or
can be easily determined by independent tests.
For example, an optical velocity change meter
can be used for this purpose, whereby

ay
Yo " T 7%, (2)

Here, t] and to are optical velocity change
meter readout %1mes corresponding to incidence
and rebound times respectively,

The oscilloscope traces in Figure 2-42
were obtained with Vo = 0 setting. Note that
the velocity trace does not pass through zero
at the transition between incidence and rebound,
consequently the displacement signal "Ramps
Off". Thus, displacement cannot be measured
but total velocity change is readily obtainable
(about 2.2 m/sec in Figure 2-42). When Vo # O,
the accuracy of the displacement trace will
depend strongly on the exactness of the V, set-
ting at the instant of collision.

This may be facilitated by using electro-
optical rather than a mechanica) microswitch
for triggering the A.D,I. Assuming Xy = 0 at
the instant of collision and given accurate
estimates of Vg, an accurate A.D.I. calculation
of dynamic displacement 1s possible.

Figure 2-41 1is an example of this mode.
Retaining the same input pulse as in Figure 2-42
the total velocity change remains the same
(2.2 m/sec) whereas the setting of initial
velacity to Vo = 1.1 m/sec results in about
5.5 mm displacement.

0leson [57] described this mode of double
integration, however, the real advantage of
double integration in shock testing lies in the
abi11ty to measure relative displacement by
double integrating a differential acceleration
signal between two accelerometers.
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Transducer—— DOUBL.E TIME BASE —— XY MODE
Xo INTEGRATOR AX = favdt MODE

o

a. Absolute ADI Mode

|

f53-Probe Accel.

Spring-mass
Dummy Product

(¢
{ Ref.

Accel.
~ Shock Machine Table

6g = 6o - G A'"'f
Gp 16 {5 GR 6o{ Gf
, e l 4Vp = fGpdt G |51 AXR Il
7
W . 6Xg = faVpdt|  scope IN SCOPE IN
ANALOG TIME BASE XY MODE
64 DOUBLE HODE aXg (LVDT)
INTEGRATOR r e )
sty (LVOT) [ -

b. Relative ADI Mode

Fig. 1 - Schematics of Analog Double Integration setups.
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3 Fig. 2 - Example of absolute mode A.D.I.
with initial conditions Vo = 0 (42) and

Vg = 1.1 m/sec (41). aVj = 2.2 m/sec in both
cases.

Relative Mode

In the relative mode there is no need to
. know Vo 1n advance. A second accelerometer is
used as a reference and acceleration differ-
ences are double integrated.

Let Gp be the relative acceleration (dif-
ferential acceleration signal),

Gp = Gy = G (3)

where Gy is the output or probe acceleration and
G 1s the input or reference acceleration sig-
nal, A good example 1s shock machine testing,
where G{ is the signal from an accelerometer
mounted on the table while Gy is generated by a
probe accelerometer on the specimen.

The first integratior, to obtain the rele-
tive velocity vp(t) is:

SGR(t) dt = Vp(t) + Constant (4)

T P

m

where the constant of integration is the 1ini-
tial relative velocity between specimen and
table at the Instant of collision. In wost
Lractical cases this can be assumed to be zero.

T

Thus, the relative displacement Ap 1s
obtained simply by:

S Vpit) dt = XR(t) + Constant (5)

Again, the constant of integration may be
assumed to be zero since the relative movement
between the table of the shock machine and spe-
cimen prior to collision is negligible compared
to the displacement during the shock.

ML

Figure 1b is a schematic of the relative
mode setup for A.D,I. Note that the LVDT (Lin-
ear Variable Displacement Transformer) {s not
required for A.D.I. calculations. It was used
in our experimental setup for estimation of
A.D.1. displacement error by comparing A.D.I
and LVDT results.

The oscilloscope traces in Figure 3-13,
19, 37 are examples of shock machine tests of
the same specimen with elastomer, plastic, and i
gas cylinder programmers respectively. Note i
the relationship between the three signals Gj,
Gy and Gp. It can be seen that Gp changes sign
during tﬁe input pulse pericd. That is, the
specimen is accelerated in relation to the
table at the beginning of the shock and decel-
erated at the end of the shock.

The oscilloscope traces in Figure 3-14, 20,
38 are examples of double integration of the
corresponding Gp signals in Figure 3-13, 19, 37
respectively. For comparison, simultaneous tra-
ces of aXp by the LVDT are shown together with
the A.D.1. traces., Note that only the first
"half cycle" represents the "shock”, while the
traces following the first half cycle represent
residual reciprocating motion of the specimen
following the shock. These can be used for
calculating the logarithmic decrement of the
system, 1.e. the damping characteristics.

DYNAMIC FORCE DEFLECTION CURVES

The dynamic force acting on the specimen
during a shock can be approximated for most
typical specimens as Gy times the mass of the
specimen, Thus, plots of Gg versus AXg are
essentially dynamic force deformation curves of
the specimen during the shock. Such curves are
very useful in materials testing where measure-
ment of resistance to transient loading is
desired.

ipm e ¢ =
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Fig, 3 - Traces of accelerometer signals for elastomer, plastic and gas cylinder programmers
(13, 19, 37 respectively). Corresponding velocity changes and relative displacements obtained by
A.D.I. (14, 20, 38 respectively).
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The oscilloscope traces on the left side
of Figure 4-10, 21, 39 are Gy versus AXp plots
of the three example input pulses in Figure 3
respectively, while the right side curves were
obtained by plotting G, versus the LVOT signal
for comparison., These curves are actually
dynamic hysteresis loops, with the outer loop
representing the first cycle (shock pulse)
while the consecutive inner loops represent
residula reciprocating specimen motion follow-
ing the shock.

Also, the area enclosed by the loops
represents the energy dissipated by the speci-
men during the test. The portion of the area
enclosed in the loops to the left of the G
axis represents the energy dissipated by tﬁe
specimen during incidence (compression of spe-
cimen) while the area to the right of the Gy
axis represents the energy dissipated during
rebound (expansion of the specimen).

It 1s interesting to observe that the
relatively long square (trapezoidal) input
pulse of about 13 g (Figure 3-37) produced sim-
1lar response to the 24 g haversine pulse (Fig-
ure 3-13?. This can be seen by comparing the
shape and size of the loops 1n Figure 4-10 to
those of Figure 4-39.

Also, the response of the specimen to the
short duration 170 g peak pulse of Figure 3-19
is only slightly greater than the previous
(compare Figure 4-21 to Figure 4-10, 39). This
demonstrates, in a very simple way, the rela-
tive role of peak acceleration, pulse shape and
duratfon in shock testing [1,3].

In addition to Gy versus aXp plots.the
A.D.1. affords plotting of any two signals out
of the group - Gy, Go, Gps AVR, AXps Xy -
against each other. Of practical interest are
Gi versus aXq and Gp versus AXR plots. The
traces in Figure 5-?6, 24, 43 are examples of
the former while the traces in Figure 4-11, 22,
40 are examples of the latter for the three
example input pulses of Figure 3.

Gy versus aX{ plots may be considered as
shock machine "programmer signatures". Compare
the gradual deflection and rebound of the elas-
tomer programmer (Figure 5-16) creating a haif-
sine pulse to the "spike" force deflection
curve of plastic programmers (virtually no
deflection - Figure 5-24) to a gas cylinder pro-
grammer (Figure 5-43) reaching maximum force at
almost zero deflection then keeping up the max-
imum force throughout its deflection followed
by sudden rebound. "Programmer signature”
curves are useful in optimal pregrammer design.

The traces in Figure 4-11, 22, 40 are tra-
ces of Gy versus aXg for the three example
{nput pu?ses in Figure 3 as before, Since
Gr = Gp - Gy, the Gp versus Axﬁ plots are
affected by both Gy and Gg. The input pulse
tends to be of short duration relative to the
specimen response. Consequently, Gp is domi-
nated inftially by -Gi and therefure shows the

-G{ pulse. After completion of the Gy pulse
the trace becomes G, versus aXp and therefore
also shows the dynamic hysteresis loops.

ACCURACY OF A,D.1

The 1nherent difficulty in double integra-
tion of shock pulses 1s that the integrator
gatns must be very high in order to provide
useable scaling on displacement. Gains of 245
volts per sec. per volt for the first integra-
tor and 400 volts per sec, per volt for the
second integrator were used in this work, This
provides a net gain of 98000 through the two
{ntegrators. As a result, displacement error
builds up at a rate of 0.049te times the DC off-
set in the first integrator.

This effect 1s minimized by use of an
automatic balancing circuit to correct DC off-
set, and a trigger mechanism to initiate inte-
gration at the instant the shock table contacts
the programmer, Additinnal sources of error in
A.D.1. applications are:

1. Poor matching of reference and probe
accelerometers in the relative mode.

2. Inaccurate triggering and electrical
trigger noise.

3. Friction noise 1n guide posts and
bearings of a shock machine.

4, Electronics components sensitivity
to temperature and other environmental
changes .

5, Due to filtering effects which may be
introduced by the accelerometers and
conditioners, there may be a small
phase error between the real acceler-
ation time history and the accelero-
meter signal used for the integration
with the accelerometer signal having
a phase lead at low frequencies with
respect to the real acceleration,

6. Slight displacement amplitude errors
can be introduced due to A.D.I.
scaling errors or accelerometer con-
ditioner loading by tha A.D.1. circuit.

A1l of these errors can be reduced to
acceptable values by accurate matching of accel-
erometers, photoelectric triggering, proper
cable shielding and high quality electronics.
Friction noise, filtering effects and A.D.I.
scaling errors can be reduced by suitable pre-
calibration.

Velocity Change Accuracy

Throughout the tests, velocity change from
an optical velocity change meter were compared
with integrator results. The table below shows
some representative results for 12 inches
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Fig. 4 - Hysteresis loops of the same specimen subjected to the three different shock pulses E
(10, 21, 39 respectively), Ccrresponding "specimen signatures™ (11, 22, 40 respectively). .
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effactive drop height with plastic programmers,

aVy Optical  aVy Integrated
__m/sec m/sec,

1.92 2.00

1.96 1.95
1.96 1.90
2.05 2.10
2N 2.20

It can be seen that the agreement is quite

good,

Absolute Displacement Accuracy 3

Theoretical displacement of shock machine
programmers were calculated using the following
formula: : |

Halfsine pulses: AX =3.898 x 107° x ACC x t@

Square pulses: AX =4,83 x 10°5 x ACC x t°

where ACC is in g, t in ms, and AX in inches.

o,

The table below compares some of the-the-
oretically calculated values to the integration
results: (12 inches effective drop height)

aXj Theoretical  &Xj Integrated
mm

mn

Plastic
E Programmers 0.928 1.2%
¥ Elastomer

Programmers 13.1 13.0
3 Gas

Programmers

(100 psi) 7.28 7.55

Again, the agreement seems to be quite good.

Relative Displacement Accuracy :

Throughout the tests, relative displace-
ment readings obtained by A.D.I. were compared
with those of the LVDT.

Visual inspection of the aXg traces gen-
erated by the LVDT, versus aXg traces obtained
by A.D.1., reveals good agreement up to about
100 ms time histories (Figure 4 and Figure 3-14,
20, 38). Note that comparing LVDT and A.D.I
results involves an inherent error due to the
phase shift effect as mentioned earlier. This
effect will tend to reduce the area enclosed
within the A.D.1. hysteresis loop. On the other
hand, the phase as measured by an LVDT will ]
tend to lag the true phase angle between the 5
real acceleration and displacement. Thus, the :

Fig. 5 - Elactomer, plastic and gas cylin-
der “programmer signatures” (16, 24, 43 respec-
tively).




area within the LVDT hysteresis loop will be
sl}ghtly increased in comparisan to the true
value,

Consequently, 1t appears that A.0,1, re-
sults do not carry larger errors of velocity
change and displacement than conventional opti-
cal velocity change meters or LVOT's,

CONCLUSION

The feasibtlity and some application pos-
sibilities of A.D.I. were demonstrated and the
accuracy was shown to be adequate for process-
ing time histories of up to 100 ms. These
results were obtained with a small commercial
analog computer. The use of better electronic
circuit design would result in superior accur-
acy and dependability. Nevertheless, the
results achfeved in the study are comparable
to those obtained by conventional optical
velocity change meters and LVOT's. The flex-
ibi11ty afforded by measuring velocity and
relative displacement from accelerometer sig-
nals, rather than cumbersome fixturing of
velocity meters or LVDT's, renders A.D.I. a
powerrul tool fn shock testing.

The economics are also favorable since the
additional cost for A.D.1. electronics are lar-
gely offset by the elimination of velocity
c?unge meters, LVDT's, conditioners and dis=
plays.

NOTATION
Sign convention for all values: Up@ Down@

G; - Input acceleration (shock machine
acceleration) - 9.
G, - Output acceleration (product component

acceleration) = g.

6 - Relative acceleration (product versus
shock machine acceleration) - g.

aVy - Input velocity change (shock machine
table versus machine base) m/sec.

aV, - Output velocity change (product versus
machine base) m/sec.

avp - Relative velocity change (product ver-
sus shock machine table, product com-
ponent versus product, etc.) m/sec.

V. -~ Inftial velocity for integration
(ideally Vg, - Vy) m/sec.

8Xy - Absolute displacement of input accel-
erometer (deflection of programmers )mm

aX_ - Absolute displacement of output accel-
erometer (displacement of product ver-
sus machine base) mm.

*U.8. GOVERNMENT PRINTING OFFICE 1 1979 0-281-~484/96

g - Relative displacement (product versus
shock machine table ) mm,

ty ety Optical aV meter readouts, ms,

t - time msec.
C « Coefficient of restitution.

LVDT - Linear Variable Differential Trans-
former (displacement transducer),
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